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ABSTRACT

The Kalman Filter is a robust tool often employed as a process observer in Cyber-Physical

Systems. However, in the general case the high computational cost, especially for large plant

models or fast sample rates, makes it an impractical choice for typical low-power microcon-

trollers. Furthermore, although industry trends towards tighter integration are supported by

powerful high-end System-on-Chip software processors, this consolidation complicates the abil-

ity for a controls engineer to verify correct behavior of the system under all conditions, which

is important in safety-critical systems and systems demanding a high degree of reliability.

Dedicated Field-Programmable Gate Array (FPGA) hardware can provide application speedup,

design partitioning in mixed-criticality systems, and fully deterministic timing, which helps en-

sure a control system behaves identically to offline simulations. This dissertation presents a

new design methodology which can be leveraged to yield such benefits. Although this disser-

tation focuses on the Kalman Filter, the method is general enough to be extended to other

compute-intensive algorithms which rely on state-space modeling.

For the first part, the core idea is that decomposing the Kalman Filter algorithm from a

strictly linear perspective leads to a more generalized architecture with increased performance

compared to approaches which focus on nonlinear filters (e.g. Extended Kalman Filter). Our

contribution is a broadly-applicable hardware-software architecture for a linear Kalman Filter

whose operating domain is extended through online model swapping. A supporting application-

agnostic performance and resource analysis is provided.

For the second part, we identify limitations of the mixed hardware-software method and

demonstrate how to leverage hardware-based region identification in order to develop a strictly

hardware-only Kalman Filter which maintains a large operating domain. The resulting hard-

ware processor is partitioned from low criticality software tasks running on a supervising soft-

ware processor and enables vastly simplified timing validation.
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CHAPTER 1. INTRODUCTION

The Kalman Filter is a robust algorithm often employed as a means to estimate the state of a

physical process in a wide array of sensing and control tasks in Cyber-Physical Systems, ranging

from radar[1] to battery monitoring for planetary rovers [2] to virtual reality [3]. Cyber-Physical

System (CPS) have been described as the integration of computing with physical processes,

where correct behavior requires correct timing [4]. Lee, in his position paper [5], describes the

limitations of current design approaches and architectures which support CPS, which includes

how the many advances in software processors (deep pipelines, speculation, etc.) makes software

timing prediction difficult or even impossible. The author makes a call for research on new ways

of approaching CPS compute architecture, including mixed hardware-software design methods,

which better support the unique constraints of the field.

Taking a broad view, CPS usually involve process control functionality for which the Kalman

Filter plays only one part. In control theory, a discrete-time control process consists of 3 tasks:

input, computation, and output. The input task typically involves an analog to digital conver-

sion. For model-driven controllers, the computation task typically of consists state estimation

(e.g. through a Kalman Filter) followed by control value computation. Lastly, the output task

involves converting the control value into a physical signal (ie digital to analog conversion).

From a theoretic standpoint, the standard assumption is that the input occurs at a constant

interval, and the computation and output process take zero time.

However, in practice, nonfunctional system engineering concerns (e.g. desire for low cost,

low power, small size) coupled with the need for a system to perform potentially many functions

with different timing requirements makes it challenging to even approximate the standard

control theoretic assumptions in a validatable fashion. These issues are discussed further in the

following section.
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1.1 Motivation

In the general case the high computational cost, especially for large system models (e.g.

consisting of many states) or fast sample rates, makes the Kalman Filter an impractical choice

for typical low-power 8-bit or 16-bit microcontrollers. The work in [6] estimated that applying

a particular variant to the Kalman Filter–the UD Filter–to a 21-state model for an Inertial

Measurement Unit (IMU) with a 10ms update rate, would require an estimated 2.8MFLOPs.

Of course, this estimate does not include other instructions such as branching and memory

access, as well as kernel overhead and time spent tending to other tasks sharing the same

processor. Fixed-point math reduces the runtime complexity, allowing the filter to be run on

microcontrollers lacking floating-point support, but imposes an additional design hurdle on the

controls engineer, since numerical precision must be accounted for as well.

Other examples of high-speed Kalman Filtering exist in literature. An even more complex

36-state IMU model appears in [7]. The high-speed running robot in [8] has a highly-complex

electromechanical model using 16 states at 1kHz sampling. Applications involving the moni-

toring or simulation of switching circuits rank among those with the shortest update deadline,

such as a proposed Kalman Filter-based fault detection system for DC-DC power converters

in Hybrid Electric Vehicles [9], which requires sample rates greater than 10kHz with low jitter.

Simultaneous location and mapping (SLAM) for mobile robotics is a common application for

the Kalman Filter which normally must be computed on a PC attached to the robot [10] due

to the large size of the covariance matrix, which may have millions of entries [11].

However, most literature on Kalman Filter acceleration tends to ignore systems engineering

level issues, which may be fundamentally more challenging. Industry trends towards tighter in-

tegration and subsystem consolidation are supported by powerful 32-bit System-on-Chip (SoC)

processors, giving rise to “mixed-criticality systems” in which high criticality tasks are time-

multiplexed on the same compute resource as low criticality tasks. Compared to the “air gap”

model of separate processing units, this approach complicates the ability for a controls engineer

to verify correct behavior of the critical tasks, whose timing may be negatively impacted by

the inherently non-deterministic timing of a complex software processor. Thus the primary
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concern of mixed-criticality systems is interference between tasks [12]. Many such applications

may be subject to strict certification requirements such as DO-178B for aerospace applications

or ISO 26262 for road vehicles.

Several ongoing research areas exist to help address this issue, each with strengths and

weaknesses. Formal verification methods, which seek to validate a system on an analytical or

mathematical basis, have made great advancements in the past decade, but still have many

barriers to integration into existing design workflows[13] and tend to lack consideration for

interactions with the environment [14]. High-confidence Worst-Case Execution Time (WCET)

analysis requires a detailed hardware-timing model, which is very hard to obtain for proces-

sors designed primarily for completing a high number of instructions per clock [15]. Carefully

designed scheduling methods, which seek to impose additional determinism on task runtime

characteristics, often impose additional runtime overhead, and still result in a stochastic com-

putation model [16, 17]. Architecture extensions to software processor architectures are also

gaining interest, but at best reduce–not eliminate–software execution time uncertainty [18]. In

all cases, the best-achievable runtime behavior is still stochastic in nature.

Finally, for mobile applications or applications operating on battery power there is clear mo-

tivation for minimizing total system power consumption: if one can halve the power consumed,

battery runtime is doubled. The hardware-based Kalman Filter accelerator in [19] is targeted

at mobile robotics and seeks to balance computational power and power consumption. Interest

in SLAM for mobile robotics–a very computationally intensive task–is also driving computer

architecture research. The work in [11] demonstrated a hardware architecture which can pro-

cess 1.5K features, consisting of 3003 states and 34MB data, at an 14Hz update rate–not only

faster, but also at substantially lower power consumption compared to a reference Pentium M

processor.

Field-programmable gate arrays (FPGAs) are of growing interest in the area of applied con-

trol theory [20]. In addition to the massive parallelism available on FPGAs that can potentially

be utilized to obtain high controller update rates, software-hardware co-design using FPGAs

can help separate embedded software concerns (e.g. real-time scheduling feasibility), from con-

trols concerns (e.g. accounting for update-rate jitter). This work is primarily interested in
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using dedicated FPGA hardware to provide computational speedup, firm design partitioning

in mixed-criticality systems, and also fully deterministic timing, which helps ensure a control

system behaves as close as possible to offline simulations. In addition, at the system engineering

level a critical advantage for FPGAs in CPS is the ability to reduce board space and design

cost by incorporating many different digital peripherals (e.g. audio/video codecs, signal multi-

plexers, DSPs, custom I/O drivers ) into the same package without sacrificing performance.

1.2 Dissertation

The overall dissertation has two major components: developing a mixed hardware-software

hardware-accelerated Kalman Filter for CPS, and extending that design to enable a fully

hardware-based compute platform for more effective architectural partitioning.

For the first part, the core idea is that of approaching the design process from the per-

spective of a linear Kalman Filter rather than the Extended Kalman Filter leads to a more

generalizable architecture with increased performance. Coupled with a piecewise-affine model-

ing methodology, operating domain can be expanded beyond the basic linear Kalman Filter.

Our contribution is (1) a novel mixed hardware-software architecture for a linear Kalman Fil-

ter which we describe as the hardware-software Piecewise-Affine Kalman Filter. This approach

achieves a speedup over existing methods by reducing computational complexity of software

and communication overhead between the processor and the hardware. This work is supported

by performance and resource analyses which approaches the problem from a novel, application-

agnostic perspective.

For the second part, the core idea is that adding architecture support for hardware-based

region identification leads to a fully hardware-based Piecewise-Affine Kalman Filter which

achieves timing-determinism and full partitioning from software tasks. Our contribution is (2)

an approach that integrates hardware architecture and a hyperrectangular model partitioning

scheme to eliminate the non-accelerated, application-specific software code stub that exists in all

mixed hardware-software Kalman Filter accelerators to date. This leads to a slight speedup over

the mixed hardware-software Piecewise Affine Kalman Filter in part 1, but more importantly
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unlocks the capability for fully time-deterministic control loops. Supporting analysis to help

determine the overall memory requirements of such an approach is also included.

An additional contribution is (3) a set of case studies which illustrate the model transfor-

mation process and overall design workflow for the tools proposed in this dissertation.

1.3 Organization of the Report

The remainder of this report is organized as follows. Chapter 2 provides background research

motivating the use of dedicated FPGA architectures for use in real-time systems. Chapter 3

describes existing works in the space of mixed hardware-software Kalman Filtering, the archi-

tecture for our Piecewise-Affine Kalman Filter, and a detailed characterization of the design.

Chapter 4 extends the architecture of the Piecewise-Affine Kalman Filter, enabling a com-

pletely hardware-oriented design which is still supervised by a traditional software processor.

Chapter 5 delves into several specific case studies to illustrate the design process as it pertains

to the Piecewise-Affine Kalman Filter. Finally, Chapter 6 provides a summative discussion and

future avenues for research.
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CHAPTER 2. HARDWARE/SOFTWARE FOUNDATIONS

2.1 Introduction

This chapter lays the conceptual groundwork for our work on FPGA-based Kalman Fil-

tering. It describes the foundational motivation for considering an application-agnostic design

methodology, the advantages of a mixed hardware-software architecture, and an illustration of

the timing-determinism which dedicated hardware can bring to timing-sensitive applications.

We present our implementation of an Linear Quadratic Regulator (LQR) originally proposed

in [21], and more aggressively pipelined in [22].

2.2 FPGAs for Sensing and Control

Kozak, in [23], surveys trends in the field of applied controls, in which we see controls

have evolved from manually-tuned single-input single-output (SISO) controllers to multiple-

input multiple output (MIMO) H∞ controllers and model-predictive controllers (MPC). The

latter types of algorithms are computationally intense and can introduce significant latencies

when implemented with off-the-shelf processing platforms. Kozak additionally suggests that

a software-hardware co-design approach for implementing advanced controllers (e.g. H∞) in

FPGAs would enable designers to make better use of these complex controllers in high-speed

systems. Monmasson, in [24], makes a similar suggestion, pointing out how different parts of

a control algorithm are better suited for different types of hardware. However, locating the

optimal software-hardware partition is still a challenge.

There are numerous examples of application-specific FPGA-based controllers in the litera-

ture. An example of a system requiring very fast control update rates appears in [25], in which

a high-speed pan/tilt camera is designed to track objects. In order to reach the 3.5ms update
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rate, a dedicated PC is used to perform image processing and produce motor control signals. It

is noted that the PC introduced considerable delay in the feedback loop. Another application

requiring very high update rates appears in [26], which presents an application-specific design

that used machine vision to control an inverted pendulum. In [27], the authors developed a

self-tuning state-space controller using a multiply-accumulate unit which is interfaced with a

digital signal processor (DSP). This paper demonstrated the use of FPGAs to control a plant

with non-constant plant parameters. In [28], the design of a high-speed, hardware-only, fixed-

point MPC is discussed. Finally, in [29], an MPC is implemented on an FPGA and is shown

to allow for a significantly faster sample rates than a PC running at a higher clock frequency.

Another interesting application space for FPGAs is Hardware-In-the-Loop (HIL) testing,

in which an FPGA may stand-in for another circuit during the design process. This form of

testing is especially of interest in power electronics, as it allows real hardware to be tested in

conjunction with a high-fidelity, realtime simulation of an electrical circuit, without the dangers

of high power. When equipped with a Digital to Analog converter, an FPGA can approximate

the output of a analog or mixed-signal circuit–examples appear in [30, 31, 32]. The work in

[33] was able to simulate a model of an Electric Vehicle (EV) drive with a 200ns timestep.

2.3 Software-Configurable Hardware

Compared to software, implementing high-performance control algorithms in hardware is

relatively rather time consuming and leads to application-specific solutions. A proposed so-

lution to this issue appears in [34] and [35], which use a co-processor to perform low-level

repetitive matrix operations for MPC. This allows control designers to use software for the

high-level logic; however, to do so they must work with a custom floating-point format and

instruction set.

A general summary of approaches used to implement controllers on FPGAs appears in [36].

In [36] a call is made for designs that make efficient use of the massive parallelism available

on FPGAs, while retaining the generality and flexibility available to software solutions. Our

work pursues this goal. In summary, a number of works exist describing controllers that achieve

reduced computational delay. However, these controllers are designed to solve specific problems,
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Figure 2.1: Application-Agnostic Workflow Supported by our Architectural Vision

unlike our fully software-configurable solutions. Garbergs, in [37, 38], presents the closest

vision and architecture to this flexible approach, but there are several differences. Their design

does not take into account scaling to different sized controllers (e.g. if controller coefficients

change the design must be re-implemented). Also, their design is intended to be standalone,

as compared to being a memory-mapped co-processor. Finally, their vision focuses more on

developing a fast hardware controller as opposed to supporting a design methodology that

bridges the gap between embedded software developers and controls engineers.

Our proposed architecture has distinct advantages over purely software or purely hardware

approaches. It differs from other hardware controllers in that it is not hardwired to control

one or a small range of plant types (e.g. only electric motors). Via software, an embedded sys-

tems engineer can easily reconfigure the controller to suit a wide range of controls applications

that can be represented as a state-space linear model. This design methodology helps bridge

the gap between controls and embedded system engineering by reducing the barriers for engi-

neers unfamiliar with hardware architecture design. A plant-agnostic workflow is illustrated in

Fig. 2.1.

In this workflow, the hardware architecture is not a purpose-built, but rather constructed

as an IP Block to facilitate quick prototyping and deployed in a wide range of applications.
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The primary configuration data consists of the model data which the controls engineer will

generate during the planning and simulation phase of the project.

2.4 General Linearized Model of Plant

Both the PoC and controller computations are centered on a standard linear state-space

model of a physical plant. This generic system model consists of matrices A,B, C, and D1 and

is formulated as follows:

xk+1 = Axk +Buk (2.1)

yk = Cxk +Duk (2.2)

These equations allow one to compute the next system state xk+1 based on the current

state xk, given a particular input uk. Additionally the output yk is computed at each time step

k based on the current state and input value. The state-space method of modeling is central

to this dissertation as it leads to straightforward, generalizable hardware implementations.

Typical methods for linearization include Gaussian regression (e.g. least squares method),

and the Taylor series method, which requires that the function is differentiable. Although

broadly applicable, the process of converting complex, nonlinear plant behavior into a linear

model is clearly a lossy one. With this issue in mind, we will extend this model in Section 3.4.

2.5 FPGA-based LQR Coprocessor

The proposed coprocessor is designed to control physical processes representable by a linear

state-space model, and illustrates the advantages of the overall design philosophy proposed

in the previous sections. It implements a Linear Quadratic Regulator (LQR) coupled with a

Luenberger Observer. An LQR controller can also be coupled with a Kalman Filter to produce

an Linear Quadratic Gaussian (LQG) controller, which allows a model of (Gaussian) noise to

be included in the overall system. Such an effort is out of scope for the present dissertation.

1D is rarely required, and therefore often omitted in literature.
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Figure 2.2: System Overview. Both the controller and Plant on Chip (PoC) are fully software
configurable over the shared AXI bus. A software or hardware controller can control the PoC
without requiring hardware reconfiguration.

The physical process which a control system seeks to control is typically termed a plant.

The inverted pendulum on a cart is a well-understood plant model which is often used as a

reference plant in the controls community. It is therefore used as an illustrative example of how

the proposed hardware accelerator architecture supports our envisioned design methodology for

helping bridge the gap between controls and embedded software engineering, as well as reducing

the impact that the compute environment has on performance characteristics.

For the purpose of evaluation, the controller can be interfaced to a hardware-based emula-

tion of a physical plant (i.e. Plant on Chip) [39]. This arrangement is depicted in Fig. 2.2. The

Plant on Chip (PoC) allows for rapid, and consistent testing of control algorithms and system

platform configurations. Once stability of the emulated plant is achieved, it can be replaced

with an interface to the actual plants sensors and/or actuators. All control computations are

done in hardware, while software running on the CPU is used for initialization and supervision.

The software is also free to perform other tasks as required by the application–for example,

task scheduling, path planning, video processing, and interactive communications.

2.5.1 System Architecture

The targeted hardware platform is the Xilinx Zynq 7000 series system-on-a-chip (SoC).

The Zynq SoC consists of an ARM Cortex A9 processor coupled with an FPGA. The Xilinx

toolchain for the Zynq directly supports hardware-software co-design, making the platform
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Figure 2.3: Architecture datapath. The dot-product result for each row is stored in the FIFO.
After all rows are processed, the FIFO writes results back in the same cycle as they are read
back out for the next update operation. An interrupt signal can be used to notify the CPU
when values are updated.

ideal for developing co-processor based applications. FPGA components are written in VHDL

and software components are written in C.

The AXI bus is a 32-bit wide standardized interface which allows a co-processor to commu-

nicate with the CPU, or allows independent communication among co-processors. As shown

in Fig. 2.2, the PoC and the controller both have slave interfaces, which allow their internal

memory spaces to appear to the CPU as memory-mapped peripherals. Meanwhile, the AXI

Bus master interface on the LQR controller allows it to sample the output of the PoC while

the system is running.

Besides the model coefficients, both controller and PoC must be configured with three con-

stants which represent the size of the state-space model, and allow boundaries to be computed

for internal memory fetches. The controller also is configured with a particular sample rate,

which represents the number of clocks it will wait before sampling the PoC output memory.

1. m: the number of plant model inputs.

2. n: the number of plant model states.

3. p: the number of plant model outputs.

Dot-products between the coefficient rows and variable vectors are performed in a straight-

forward manner using a pipelined multiply-accumulate unit, as shown in Fig. 2.3. These op-
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erations are performed as single-precision floating point to avoid the limitation on precision

and tedious preprocessing work associated with fixed-point math, as well as to increase the

ease with which the co-processor integrates with software. The resource usage of the system is

summarized in Table 2.1; in total 5% of available Slices are consumed. Thus the approach is

not only flexible but compact.

Table 2.1: System Resource Usage on Zynq XC7Z020

Slices LUTs BRAM/FIFO DSP48E1

PoC 443 1376 4 7

Controller 447 1378 5 3

Total 890 2754 9 10

2.5.1.1 Co-processor Memory Space

The controller and PoC each have two separate dual-ported memories to facilitate parallel

data access: one for coefficients (A, B, C, L, K), and one for variables (x, y, u). The memory

map as seen by the CPU is shown in Fig. 2.4. Each memory is dual ported with independent

outputs. One port is dedicated to interfacing with the CPU for memory initialization and read

back, and the other port dedicated to internal operations.

As a simple optimization, matrices which are involved in the same dot-product are concate-

nated in memory where it is possible. This prevents two extra, unnecessary load-store cycles,

and is explained in greater detail in subsequent sections. All data is loaded by the CPU into a

contiguous block at the coefficient or variable memory base address, with only the values of m,

n and p being needed to compute arbitrary matrix boundaries. Compared to providing a fixed

address for each matrix, this scheme maximizes memory efficiency and plant model flexibility,

since there is no real architectural constraint on m, n or p other than the overall memory size

of the target FPGA.
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Figure 2.4: Coefficients and variables occupy independent, packed memory spaces, with matri-
ces laid out in row-major order.

2.5.1.2 Plant on Chip Algorithm

The A and B matrix, and the x and u vectors, are concatenated in order to allow more

efficient pipelining of multiply-accumulate operations. All computations are performed in single

precision floating point format. The PoC computes the equations in Equations 2.3 and 2.4.


x1|k+1

...

xn|k+1

 =


a1,1 · · · a1,n b1,1 · · · b1,m

...
. . .

...
...

. . .
...

an,1 · · · an,n bn,1 · · · bn,m

×



x1|k
...

xn|k

u1|k
...

um|k


(2.3)


y1
...

ym

 =


c1,1 · · · c1,n

...
. . .

...

cp,1 · · · cp,n

×

x1|k

...

xn|k

 (2.4)
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u y

Plant On Chip
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Figure 2.5: LQR controller with observer controlling an emulated plant (PoC).

2.5.1.3 LQR Controller Algorithm

An LQR controller is based around the gain matrix K. A particular K is sought such that

the feedback law uk = −Kxk minimizes the quadratic cost function in Equation 2.5 [40].

J(u) =

∞∑
1

xTkQxk + uTkRuk (2.5)

Generating K requires the controls engineer to select state-cost matrix Q and performance

index matrix R which work well for a given plant.

Although the complete value of state vector x can be read from the PoC at any time, many

plant models include internal states which cannot be directly measured. Therefore, to increase

its flexibility our controller also integrates a Luenberger-type observer model. Here L denotes

the gain matrix of the observer, and y is the measurable states sampled from the plant.

x̂k+1 = Ax̂k +Buk + L(y − Cx̂k) (2.6)

This addition allows the controller to estimate the value of the unmeasured plant states as

x̂; if all states are observable then one merely configures n equal to p for the co-processor. It

is this estimated state vector which is used to generate the control vector u. This process is

shown in Fig. 2.5.

The control update operation is split into three phases, shown in Equations 2.7-2.9. Matrix

Ip×p is the identity matrix, and matrices K and C are negated before loading into memory to
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eliminate the need for subtraction. Matrix sizes in terms of the user-configured constants m,

n and p are included as subscripts.

Ep×n =

[
Ip×p −Cp×n

]
×

 yp×1

x̂n×1|k

 (2.7)

x̂n×1|k+1 =

[
An×n Bn×m Ln×p

]
×


x̂n×1|k

um×1

Ep×1

 (2.8)

um×1 =

[
−Km×n

]
×
[
x̂n×1|k+1

]
(2.9)

Additionally, the addresses applied to the Coefficient RAM and Variable RAM are split

into base and offset addresses in order to increase flexibility. The pseudocode in Algorithm 1

demonstrates the computation of memory addresses for the dot product operation. Note that

address calculation arithmetic is comprised of only small integers, and is only computed once

during initialization.

Algorithm 1 LQR with Observer using variable m, n, and p

1: procedure Initialize

2: vbase ← {0, p, p} . Compute memory boundaries (implemented as multiplexer).

3: cbase ← {0, 2p(p+ n), (2p+ 2n+m)(2p+ 3n)}
4: vmax ← {(p+ n)− 1, (n+m+ p)− 1, n− 1}
5: cmax ← {2p(p+ n)− 1, (n+m+ p)(3n)− 1,mn− 1}
6: procedure Update

7: for j ← 0 ... 2 do . For each computation phase...

8: sum← 0

9: for ci ←0 ... cmax[j] do . For each coefficient...

10: sum← sum+ COEF MEM[cbase[j] + ci]×VAR MEM[vbase[j] + vi]

11: if vi = vmax[j] then

12: WBFIFO← sum . Save dot product for this row into writeback FIFO.

13: vi ← 0

14: sum← 0 . Reset accumulator.

15: else

16: vi ← vi + 1
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2.5.2 Evaluation

For the experimental setup, the Zynq’s ARM processor and FPGA fabric are both clocked

at 50Mhz, and memory caching is disabled. We configure the ARM processor to 50 Mhz to

represent a typical low-powered, integer-only embedded processor, and disable cache to emulate

safety critical systems that require highly deterministic timing. Traditionally, both delay and

jitter are considered as critical parameters for determining the stability of a controller [41]. In

this experiment, we only consider delay, since the software controller is single-threaded, and

the hardware controller is naturally jitter-free (e.g. approximately down to the level of jitter

on the system oscillator). In particular we are concerned with the effect that controller update

delay has on plant stability. The experiment performed in this section presents a test plant

which is designed to require a sample rate of 2ms to maintain stability. As shown, the hardware

controller shows a clear advantage over the software controller, as the former can maintain plant

stability for large state-space models, whereas the latter cannot due to computational delay.

2.5.2.1 Inverted Pendulum Model

The inverted pendulum configuration is illustrated in Fig. 2.6, and the model parameters

are shown in Table 2.2. The state vector consists of four states: x, ẋ,φ, and φ̇. This model

requires the CPU set co-processor parameters n = 4, m = 1, and p = 2.

A partial derivation of the system follows. The two nonlinear equations which describe the

physics of the pendulum [42, 43] are shown below:

(M +m)ẍ+ bẋ+mlθ̈cosθ −mlθ̇2sinθ = u (2.10)

(I +ml2)θ̈ +mglsinθ = −mlẍcosθ (2.11)

We linearize the equations around the upright equilibrium position of the pendulum (θ = π),

assuming that the system will maintain a small deviation from this position. We introduce φ

as this deviation (that is, θ = φ+ π). We use small angle approximations of the trigonometric

functions in the system equations to obtain a linearized version.



www.manaraa.com

17

(M +m)ẍ+ bẋ−mlφ̈ = u (2.12)

(I +ml2)φ̈−mglφ = mlẍ (2.13)

Finally we rearrange the expressions as a set of first-order differential equations so they can

be put into state-space form.



xk+1

ẋk+1

φk+1

φ̇k+1


=



0 1 0 0

0 −(I+ml2)b
I(M+m)+Mml2

m2gl2

I(M+m)+Mml2
0

0 0 0 1

0 −mlb
I(M+m)+Mml2

mgl(M+m)
I(M+m)+Mml2

0





xk

ẋk

φk

φ̇k



+



0

I+ml2

I(M+m)+Mml2

0

ml
I(M+m)+Mml2


u

(2.14)

Note that the output expression in Equation 2.15 is configured to reflect the fact that only

position x and angle φ are directly observable.

y =

1 0 0 0

0 0 1 0




xk

ẋk

φk

φ̇k


+

0

0

u (2.15)

At this point, Matlab is used for discretization and to solve the LQR minimization problem,

thereby providing LQR gain matrix K.

2.5.2.2 Performance Analysis

The effect of controller computational delay on plant behavior is tested by setting the pen-

dulum vertical displacement angle φ to −5◦ so that it is initially unstable, and then increasing



www.manaraa.com

18

M

θ
F 

m,I

l

x

Φ

Figure 2.6: Inverted Pendulum Model

Table 2.2: Inverted Pendulum Model Symbols

Symbol Meaning Initialization

M cart mass 2.725kg

m pendulum mass 1.09kg

b coefficient of friction 0.1 N/m/sec

l length to pendulum

center of mass

0.2 m

I pendulum moment of

inertia

0.006kg ·m2

u applied force 0

x position displacement 0

θ angle from downward

vertical axis

N/A

φ angle from upward ver-

tical axis

−5◦

controller workload over repeated trials. Extra zeroed ‘dummy’ states are added to the 4 base

states in order to modulate the controller delay without impacting the model itself.

Fig. 2.7 shows the response of the inverted pendulum plant as the number of control states

is increased. At 16 states, the response shows decaying oscillations, and beyond 25 states the

plant becomes unstable. However, Fig. 2.8 shows that increasing the computational workload

has very little observable effect on the stability of the plant. Table 2.3 compares the software

execution time to the hardware execution time as the number of states is increased.

It is also possible to estimate the maximum number of states supported by this architecture.

Based on the memory map, the total memory required for both the PoC and controller can be

computed as follows:
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Table 2.3: Execution Time Comparison (µs)

States Software Hardware

4 183 9.9

8 428 20.66

16 1254 48.64

32 4071 127.14

f(m,n, p) = 2n2 + p2 + 3nm+ 2pn+ 2(p+ n+m) (2.16)

Given that total amount of block RAM on the target device is 560kB, we consider two

cases: one actuator and many actuators. Letting n = p, which is worst-case memory wise, if

m = 1 then the maximum number of states is approximately 166. If we constrain m = n = p

then the maximum number of states is approximately 131.

2.6 Conclusion

In this chapter we have presented a novel approach to designing a hardware-based co-

processor for control applications, and have illustrated how this approach could be used to

ease the transition from control theory to embedded control implementation. In the following

chapters, we take these concepts and study how we can apply them to a significantly more

complex algorithm: the Kalman Filter.
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Figure 2.7: Impact of computation delay on plant stability (software controller)
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CHAPTER 3. MIXED HARDWARE-SOFTWARE KALMAN FILTER

3.1 Introduction

The Kalman filter is a common means of accurately estimating the state of a plant in

the presence of noise in either measurements or the model itself. As discussed in [6], the

computational complexity of the Kalman Filter, when coupled with the high-dimensionality of

models and high sample rates required in applications such as inertial navigation systems (INS),

would tend to overwhelm processing resources available in the low power microcontrollers used

in typical automotive or industrial settings.

Although several algorithmic variations exist, such as Sigma-Point Kalman Filters [44, 45],

the Extended Kalman Filter (EKF) is the most commonly used extension to the Kalman Filter,

as it consists of only a relatively small modification to the original Kalman Filter algorithm

to support non-linear models. Mixed hardware-software implementations of the Extended

Kalman Filter (EKF) have been proposed in existing literature [6, 11, 46, 47, 1], which focus

on computational acceleration. These designs consist of an application-specific, nonlinear,

non-acceleratable part that is computed in software, and a generic matrix-math part which

is computable in hardware. We claim that the construction of existing approaches creates an

artificial upper bound on both the overall speedup, and fail to explore the broader architectural

advantages of dedicated hardware for control systems and mixed-criticality systems.

Instead of focusing on the EKF algorithm, we propose a piecewise affine1 modeling ap-

proach which uses the standard linear Kalman Filter. This not only offers an application-layer

speedup over the EKF approach, but allows the complete plant observer to be computed on

the coprocessor in a general way, thereby dramatically simplifying the analysis of control loop

1Note on terminology: affine indicates a linear relationship plus a translation. Affine is a more flexible form
than linear, but these terms are often used interchangeably.
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timing. The high level structure is illustrated in Fig. 3.1, along with functional units proposed

in [21].

In the following sections, which elaborate on the work from [48], we describe an implementa-

tion of the FPGA architecture supporting the piecewise affine approach, provide an assessment

of the scalability of the implementation, and explore the performance tradeoffs between the typ-

ical mixed hardware-software EKF approach and the proposed piecewise affine approach. The

majority of the literature available on hardware-accelerated Kalman Filtering is application-

specific. In this chapter, in order to maintain broad relevancy, we take a unique approach by

performing analyses in an application-agnostic manner.

3.2 Kalman Filter and Extended Kalman Filter Algorithms

The Kalman filter, which is optimal only for linear models, involves the repeated application

of the following steps at a particular sampling rate:

1. Estimate state

2. Calculate error covariance

3. Calculate Kalman gain

4. Update state estimate based on measurement

5. Update error covariance based on measurement
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This process is shown more formally in lines 5 through 9 of Algorithm 2. In this paper, the

subscript k indicates the discrete time-step in question. Furthermore the notation x−k denotes

the state vector before performing the measurement update, and x+k to denote the state vector

after performing the measurement update.

Algorithm 2 Kalman Filter [49]

1: procedure Initialize

2: x̂−0 ← E[x0]

3: P−x̃,0 ← E[(x0 − x̂−0 )(x0 − x̂−0 )T ]

4: procedure Update

5: x̂−k ← f(x̂+k−1, uk−1) . Estimate state

6: P−k ← Ak−1P
+
k−1A

T
k−1 +Q . Calc. error cov.

7: Kk ← P−k C
T
k [CkP

−
k +R]−1 . Calc. gain

8: x̂+k ← x̂−k +Kk[yk − g(x̂−k , uk)] . Update state

9: P+
k ← (I −KkCk)P

−
k . Update cov.

In the EKF, which extends the Kalman Filter to non-linear models, the derivative of the

state update and measurement equations f(x̂k, uk) and g(x̂k, uk) (Equations 3.1 and 3.2) must

be determined in advance analytically. During each update step, they are evaluated at the

current state estimate [50].

Axk−1 =
∂f(xk−1, uk−1)

∂xk−1

∣∣∣∣
xk−1=x̂

+
k−1

(3.1)

Cxk =
∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂

−
k

(3.2)

Overall these expressions allow us to produce a first-order (linear) estimate of function

behavior at the current state value, but increase the computational effort. In cases where the

derivative cannot be determined analytically (or it is very difficult), numerical differentiation

might be necessary (e.g. finite difference method), which increases the cost yet further since the

state update expression (and possibly the measurement update expression) must be evaluated

twice per time step.
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3.3 Hardware Accelerated Kalman Filtering

Hardware-based solutions to manage the computational complexity of the EKF have pre-

viously been proposed. An early effort [51, 52] offered substantial speedup over software, but

required multiple FPGAs to implement and lacked flexibility. More recently an alternative im-

plementation of the EKF [6] has been proposed for enhanced numerical properties. There has

also been proposed a specialized FPGA architecture to support Kalman Filtering for SLAM

applications normally processed on a higher power processor such as a Pentium M [11].

Another, more application-agnostic group of implementations employ architectures based

on the systolic array. The systolic array is a well-known structure which, when implemented on

hardware, can support substantial parallelism while reducing signal fanout and other common

bottlenecks to design scaling. It has been recognized for some time as an efficient basis for a

hardware-based implementation for matrix math, and subsequently as a means to accelerate

the Kalman Filter, since at least the early 90’s [53]. In addition to a few other architec-

tural approaches, the work in [53] describes the Fadeev algorithm, which performs modified

Gauss-Jordan elimination on an input block matrix, M , comprised of four specially-chosen

submatrices, A,B,C, and D. The bold typeface has been applied to the submatrix names to

differentiate them from those used for state-space notation.

M2n×2n =

 A B

C D

 (3.3)

In Equation 3.3 (and throughout this paper), n is the number of states in the specific state-

space model of plant behavior. The work in [46] extends [53] by providing extensive FPGA

implementation details, as well as describing a folding approach to reduce spacial complexity

(at the expense of increasing time complexity). The approach is partially motivated by the

need to maintain high power efficiency for battery-powered applications. The work in [47] adds

even more array folding, essentially decoupling the required number of math operations from

the required number of processing elements–but in general the implementation complexity is

very high.
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Figure 3.2: Extended Kalman Filter Algorithm Partitioning

Each of these approaches use the Fadeev algorithm to implement a general-purpose matrix

algebra functional unit, and then rely on software to provide the application-specific matrices

to the hardware at every step within the Kalman Filter algorithm. A recent architectural

variation in [1] attempts to reduce the communication overhead (on the order of 30% of the

total update time) to the coprocessor by introducing a hardware sequencer to automatically

compute the application agnostic steps of the algorithm. However, the matrices representing

the linearized model must still be sent to the coprocessor on every iteration. Furthermore, in

all aforementioned works the software-based application-specific portion of the update process

still requires evaluation of the full non-linear function in the prediction step (e.g. f(x̂k, uk) and

g(x̂k, uk) ) , and the evaluation of the Jacobians of the non-linear functions, every iteration.

The structural comparison of the software-based EKF and mixed hardware-software imple-

mentations is illustrated in Fig. 3.2. The upper (orange-colored) box describes the application-

specific portion of the algorithm, while the lower (blue-colored) box describes the generic

matrix-math portion which is common to all implementations. The software-only version ap-

pears in (a), the existing hardware-software approach from previous publications appears in

(b), and the extension described in [1] appears in (c).
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Figure 3.3: Mixed Hardware/Software PWAKF

Our work also employs the Fadeev algorithm to implement the matrix-math portion of the

Kalman Filter. However, we also study the use of a piecewise-affine system modeling approach

as a means to develop a coprocessor with significantly less communication requirements com-

pared to EKF-based approaches, while maintaining a similar operating domain. For brevity

we term this the Piecewise-Affine Kalman Filter (PWAKF), whose partitioning is depicted in

Fig. 3.3. The modifications necessary for a fully hardware-based solution (similar to the work

in Chapter 2) will appear in the next Chapter.

3.4 Piecewise Affine Model of a Plant

Piecewise affine modeling is a well-known approach to linearizing a non-linear model, as

discussed in the summative works [54] and [55]. Rather than linearize a non-linear model

around a particular operating point, which yields a single system of equations, it is possible to

divide the non-linear space into regions, wherein all points within the region are computed via a

linear (or affine) function. The goal is to obtain a much wider operational range, while making

a tradeoff of computations for memory. In terms of applications, it is often used as a way to

model the nonideal behavior of many engineered systems, such as tire slip in an unmanned

ground vehicle [56]. Other systems may explicitly require a piecewise modeling method such as

for simulation of switching circuits [57, 58], or Kalman-filter based fault detection for switching
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circuits [9],which requires very high sample rates. More broadly speaking, it is also an efficient

means to model “nearly” linear nonlinear systems.

One issue with piecewise affine modeling may be the difficulty in finding good partitions for

large state-space models. It is worth mentioning there is existing work on automated system

identification, for example [8].

We assume that non-linear models of interest can be mapped into the following generic

state-space form.

xk+1 =



x1|k+1

x2|k+1

...

xn|k+1


= f(xk, uk) =



f1(xk, uk)

f2(xk, uk)

...

fn(xk, uk)


(3.4)

y =



y1|k+1

y2|k+1

...

yp|k+1


= g(xk, uk) =



g1(xk, uk)

g2(xk, uk)

...

gp(xk, uk)


(3.5)

In the general case, partitioning such a multivariate function into q linear regions will yield

a set of equations of the form in Equation 3.6. This formulation extends the basic linear model

introduced in Section 2.4.

xk+1 = Aixk +Biuk

yk = Cixk +Diuk

∀k = 1, 2, ...,∞, ∀i = 1, 2, ..., q

(3.6)

Each of q regions can each be identified by a globally unique identifier i, which we may treat

like an additional hidden state. Our PWAKF approach assumes that the plant is modeled in

this form. Note that although Equation 3.6 is strictly linear, affine expressions can be refactored

into the linear state-space form. Consider the following affine expression in which c is assumed

to be a column vector with as many entries as there are rows in Bi.
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xk+1 = Aixk +Biuk + c (3.7)

This can be normalized using augmented matrices as shown below.

xk+1 = Aixk +

[
B c

] uk

1

 (3.8)

This is an important consideration, since for a piecewise-defined model most regions (besides

that at the origin) will require a nonzero translation term.

3.5 System Architecture

Fig. 3.1 shows the general structure of the hardware. The targeted hardware platform

for implementation is the Xilinx Zynq 7z020 system-on-a-chip (SoC). The Zynq SoC consists

of an ARM Cortex A9 processor (termed the Processing System, or PS) coupled with an

FPGA (termed the Programmable Logic, or PL). The Xilinx toolchain for the Zynq directly

supports hardware-software co-design, making the platform ideal for developing co-processor

based applications. FPGA components are written in VHDL and software components are

written in C.

The AXI bus is a 32-bit wide standardized interface which allows a coprocessor to com-

municate with the PS, or allows independent communication among co-processors. As shown

in Fig. 3.1, the coprocessor has a slave interface, which allow their internal memory spaces to

appear to the PS as memory-mapped peripherals–an interface very familiar to the embedded

engineer. Meanwhile, the AXI Bus master interface on the coprocessor allows it to read from

sensors or other functional units within the FPGA while the system is running.

The architecture within the coprocessor is shown in Fig. 3.4. The regular structure of the

systolic array in Fig. 3.5 allows us to use VHDL’s generate and loop statements in such a way

that the systolic array can be produced to support processing of a state-space model of arbitrary

size n. This enormously simplifies the work needed to test the design at various scales.
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Figure 3.5: Internal systolic structure of Fadeev functional unit (n=3).

3.5.1 Fadeev Algorithm

As the Fadeev algorithm has already been implemented in the previous work described in

Section 3.3, we only describe the approach abstractly here; more details on the theory of the

algorithm appear in [59]. The algorithm is implemented as a non-homogeneous array consists of

a node which performs division, which is referred to as a Boundary Node (the pivoting column

in Gauss-Jordan elimination) and 2n − 1 Internal Nodes, which perform multiplication and

addition (where n is the number states). The result is the Schur Complement of the A matrix
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idle S1 Sn

ctrl.a_base←I
ctrl.b_base←P
ctrl.c_base←A
ctrl.d_base←ZERO
ctrl.e_base←T
ctrl.transpose←'1'

S2

ctrl.a_base←I
ctrl.b_base←T
ctrl.c_base←A
ctrl.d_base←Q
ctrl.e_base←P
ctrl.transpose←'0'

…

Figure 3.6: The state machine for the control unit is simple and flexible enough to implement a
variety of algorithms. In each state, a set of base pointers into memory are set to the appropriate
constant value at that step in the algorithm.

of Equation 3.3. The Schur Complement is shown in Equation 3.9, and the hardware structure

appears in Fig. 3.5.

E = D + CA−1B (3.9)

As an example (similar to step 5 of Table 3.1, for instance), the following demonstrates the

block matrix inputs needed to compute the matrix inverse of some matrix A, using identity

matrix I and zero matrix 0.

M =

 A I

I 0

 (3.10)

The Fadeev algorithm then consumes input matrix M and effectively computes the Schur

Complement of the A submatrix, which yields A−1.

E = 0 + IA−1I = A−1 (3.11)

Our work thus far uses [46] as a basis for implementing the Fadeev algorithm, as it scales

better in hardware resources than a full systolic array implementation (linear vs. quadratic).

The tradeoff is that runtime is a function of n2, as inputs must be iteratively cycled through

a single row of nodes rather than a full 2-dimensional array. A schedule of inputs is developed

for this basic hardware element to produce a complete hardware-accelerated Kalman Filter

(Tables 3.1 and 3.2 ). The control block consists of a state machine which need only set the

correct set of base pointers for reading and writeback during each algorithm step (Fig. 3.6).

Therefore it is straightforward to implement different variations of the same algorithm.



www.manaraa.com

31

En

matrix row col

ceil(log2(n)) bits

matrix row

Block RAM

Column 0

Block RAM

Column 1

matrix row

Wr0

En

Wr1

Count0 Count1 

addr0 addr1

dout0 dout1

Base address

In0

In1

In2

O
u
t0

0 0 1

Shift EN

W
r0

Row0(0)Row0(1)Row0(2)

load0

load1

load2

In0

In1

In2

O
u
t1

load3

load4

load5

In0

In1

In2

O
u
t2

load6

load7

load8

R
d
0

R
d
1

R
d
2

M

M
T

Modulo-n 

counter 

block

Control Unit

Figure 3.7: Example address generation circuit (n = 2) for writeback. Read address generation
uses an identical circuit driven by a set of “Rd” signals.

3.5.2 Memory Interface

In the worst case the Fadeev systolic array needs to write back n words simultaneously,

and read 2n words simultaneously; thus we need to place matrix columns in separate dual-port

block RAMs (BRAMs). For each BRAM, Port A is attached to the columns 0 to n/2 − 1 of

the Fadeev input bus (left side), and Port B is attached to columns n/2 to n− 1 (right side).

From the perspective of the PS, the global address to locate a specific element within a

matrix is formed by concatenating the matrix (base) address, the matrix row address, and

the matrix column address. The latter two address components are ceil(log2(n)) bits wide.

Columns are located in separate BRAMs, and rows are accessed in parallel by applying the

same address to the n column BRAMs. Non-matrix variables (such as x, y, etc) in the PWAKF

occupy the same sized memory block as any other matrix, and the unused matrix elements are

simply filled with zeros.

Within the coprocessor itself, it is not necessary to specify the row column address, as it

is implicit in the structure of the interconnects. The signals from the Fadeev unit signaling

that the writeback data is valid drive n instances of modulo-n counters, which produce the

row address within each BRAM. An example of address generation for writeback is shown in

Fig. 3.7. Independent selection of rows is needed to accommodate the skewed input-output

pattern of the systolic array.
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Figure 3.8: Architecture of transpose functional unit (n = 3), comprised of parallel shift
registers.

3.5.3 Matrix Transpose

As we are attempting to implement the full Kalman Filter in hardware, we need to con-

sider how to handle the matrix transposes. The obvious solution is to pre-compute them and

store them in memory. However, after partitioning the algorithm there are several temporary

matrices for which the transpose cannot be pre-computed–it has to be done online.

Another option is to simply manipulate the address provided to the BRAMs so that we

sequentially fetch all elements in a column of our input matrix to produce the row of our

transposed matrix. This is not a scalable solution, however, since multiplexers will be needed

between the BRAMs and the Fadeev input so that each BRAM output port can be re-routed

to every array input column. For large n and 32-bit words, this quickly results in thousands of

multiplexed connections.

Instead, we propose a simple functional consisting of shift registers to transform the rows

output from the BRAMs into columns (Fig. 3.8). Matrix property ABT = (BAT )T allows us to

move all transposes in the Kalman algorithm to the B position within our input block matrix

(Equation 3.3). As a result, we need only provide this unit on the right-hand side datapath.

Furthermore, due to the skewed input pattern characteristic of systolic arrays, inputs on the

left-hand side will be consumed first, so that inputs on the right-hand side do not need to be

available immediately (ie instead, n cycles after the first element on the furthest left-hand side

is input). This effectively hides the extra clock latency involved in loading the transpose unit.
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Table 3.1: Input Schedule for Extended Kalman Filter

Step Computation Fadeev Input (M)

1 T = AP T
[
I P T

A 0

]
2 P = AT T +Q

[
I T T

A Q

]
3 T = CP T

[
I P T

C 0

]
4 K = CT T +R

[
I T T

C R

]
5 K = TK−1

[
K I

T 0

]
6 P = P −KT T

[
I T T

−K P

]
7 x = x+KE

[
I E

K x

]

3.5.4 Hardware-Software Partition

We next break down the workload distribution between the PS (i.e. software) and the

PL (i.e. hardware) to distinguish the EKF (based on paritioning in Fig. 3.2c) and PWAKF

approaches.

3.5.4.1 EKF Approach

For the EKF, the PS needs to obtain the previous state estimate from the PL (x̂k−1), then

uses it along with the non-linear state update equation f(xk, uk) and measurement equation

g(xk, uk) to compute the following in software.

Axk−1 =
∂f(xk−1, uk−1)

∂xk−1

∣∣∣∣
xk−1=x̂

+
k−1

(3.12)

x̂−k = f(x̂+k−1, uk−1) (3.13)

Cxk =
∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂

−
k

(3.14)

yk = g(x̂−k , uk) (3.15)
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Ek = zk − yk (3.16)

The resulting Ak and Ck matrices, along with the state estimate x̂k and vector Ek need

to be written back to the PL. Vector Ek from Equation 3.16 is the error between the sensor

measurement and estimated measurement value based on the plant model. The PL sequence

of computations using the Fadeev hardware are listed in Table 3.1, and correspond to lines 6-9

in Algorithm 1. In the table, subscripts are omitted for simplicity. At the completion of this

computation, the PS will read the updated state estimate from the PL in preparation for the

next iteration.

3.5.4.2 PWAKF Approach

For the PWAKF, the PS must obtain the previous state estimate from the PL (x̂k−1). It

then needs to determine the region index i within the piecewise-affine state-space that this state

lies (see Equation 3.6). If there are relatively few regions, a simple region by region bounds

check would suffice. For more complex systems, a binary search tree might be used such as

in [60]. If hyperrectagular partitions are used, constant-time lookup is possible as the current

region identifier can be used as an index into a multi-dimensional array.

The PS then writes to the PL a subset of elements of Ak, Bk, Ck or Dk as required by the

linear model, but only if we have entered a new region, which reduces AXI bus communication

overhead. This can be done simply by maintaining the index of the current region in software.

The PL sequence of computations using the Fadeev hardware are listed in Table 3.2. Note

the additional steps 7-10, which are the linearized computations corresponding to the non-linear

function computed in software for the EKF approach. Another difference is that the error term

z− y is computed in software for the EKF approach (and later transmitted over the AXI bus),

but is computed in hardware (step 11) in the PWAKF approach. At the completion of these

computations, the PS will read the updated state estimate from the PL in preparation for the

next iteration.
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Table 3.2: Input Schedule for Piecewise-Affine Kalman Filter

Step Computation Fadeev Input (M)

1 T = AP T
[
I P T

A 0

]
2 P = AT T +Q

[
I T T

A Q

]
3 T = CP T

[
I P T

C 0

]
4 K = CT T +R

[
I T T

C R

]
5 K = TK−1

[
K I

T 0

]
6 P = P −KT T

[
I T T

−K P

]
7 T = Ax

[
I x

A 0

]
8 x = T +Bu

[
I u

B T

]
9 T = Cx

[
I x

C 0

]
10 y = T +Du

[
I u

D T

]
11 T = z − y

[
I I

−y z

]
12 x = x+KT

[
I T

K x

]

3.6 Implementation Results

3.6.1 Resources

The Zynq chip has ndspmax = 220 available DSPs, and our usage directly impacts our space-

time tradeoff. These are a critical resource for floating point-heavy designs and should be used

strategically. There are 2n− 1 Internal Nodes in the array (where n is the number of states),

each containing a multiplier and an adder. If we allocate ndsp=4 DSPs per Internal Node, the

maximum value of n is 28. If we allocate 5 DSPs per Internal Node, the maximum value of n
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Figure 3.9: Architecture resource consumption for various values of n. Scaling halts at n = 28
due to exhaustion of DSP units, although there are additional SoCs in the Zynq line with
significantly more DSPs. Additional PEs would be implemented in reconfigurable logic, and
would be quickly exhausted.

is 21 (without increasing FF/LUT usage). Thus to ensure all nodes use only DSPs, we must

observe the following constraint.

ndsp(2n− 1) ≤ ndspmax (3.17)

The system resources were assessed at various sizes of n in Fig. 3.9. The difference between

the EKF and PWAKF approach lies only in the controller steps; thus the impact on LUT usage

is negligible. Resource growth is primarily linear in nature: LUT growth is a linear function of

n, BRAM growth is 2n, DSP growth is ndsp(n− 1). The transpose unit consists of an array of

registers and grows as a factor of n2.

3.6.2 Performance

The performance of the PWAKF approach is compared to that of the EKF approach: first at

the hardware level, which makes for easier comparison across implementations, and then at the

mixed hardware-software level, for which most existing literature presents highly application-

specific results. Software-based EKF benchmarks use GNU Scientific Library–a well-known

library with optimized matrix algebra routines–and use gcc’s flag −O2. The ARM NEON

(SIMD) instructions are not activated at this optimization level, since NEON is not IEEE 754

compliant and may result in loss of precision–not desirable for critical code. The FPGA imple-

mentations are clocked at 45Mhz, while the ARM processor is operated at 200Mhz which lies

in the spectrum of microcontroller frequencies deployed widely in embedded systems [6]. Mi-
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Table 3.3: Hardware-Only PWAKF & Hardware-Only EKF vs. Software-Only EKF

EKF SW

200Mhz

Time (ms)

PWAKF HW (45Mhz) EKF HW (45Mhz)

n
Time

(ms)
Speedup

Time

(ms)
Speedup

2 0.073 0.011 6.70 0.006 10.10

4 0.069 0.019 3.57 0.011 5.46

6 0.156 0.043 3.64 0.025 5.82

8 0.258 0.075 3.45 0.044 5.52

10 0.430 0.115 3.73 0.067 6.12

12 0.692 0.164 4.21 0.096 6.95

14 0.985 0.222 4.44 0.130 7.40

16 1.396 0.288 4.85 0.168 8.11

18 2.020 0.363 5.57 0.212 9.33

20 2.681 0.446 6.01 0.260 10.11

22 3.422 0.538 6.36 0.314 10.74

24 4.264 0.638 6.68 0.372 11.27

26 5.283 0.747 7.07 0.436 11.92

28 6.409 0.864 7.42 0.504 12.51

crocontrollers in this performance range are more likely to contain a memory management unit

(MMU) and other such peripheral support which makes them more attractive for multitasking

under a real-time operating system.

3.6.2.1 Hardware Level

A performance comparison of the PWAKF hardware and EKF hardware vs. a direct soft-

ware implementation of the EKF algorithmic steps appears in Table 3.3. The PWAKF co-

processor shows less speedup compared to the EKF coprocessor, because it performs several

additional computation steps. However, we have not yet considered the additional software

processing and communication time that the EKF requires. This is explored in the following

section.

Of interest is the elevated speedup around n = 2 to n = 4 both in Table 3.3 and Fig. 3.11.

This is due to the fact that the software processor has a relatively fixed runtime overhead which

the dedicated hardware does not–e.g. function calls, branch tests, etc. which represents a large

percent of the overall runtime for small values of n.
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Figure 3.10: Sequence Diagram showing the set of delays considered in this study. With this
configuration, the update timing is driven by the hardware. The software prepares the matrix
values needed for the next iteration.

The number of clock cycles for a complete algorithm iteration can be analytically expressed

as a function of the latency of the divider, multiplier, and adder units. This allows us to

determine the number of clocks needed for various values of n, shown in Equation 3.18.

k = (Dma(2((n2)− 1)) +Dma(2n− 2))Ks +Dd (3.18)

The relevant symbols are as follows: Dma is the clocks needed to complete either multipli-

cation or addition (they are the same), Dd is the clocks needed to complete division, n is the

number of states, and Ks is the number of steps in the Kalman algorithm.

3.6.2.2 Mixed Hardware-Software Level

The advantage of the PWAKF approach does not become apparent without analyzing the

mixed hardware-software performance. In this section we analyze how the PWAKF can provide

a speedup over the EKF, while also shifting the majority of the computation (greater than 99%)

to timing-deterministic hardware.

The general idea is that the PWAKF approach will present less communication overhead

and less overhead on the application-specific part of the computation in software, because

these processes need only occur when the state of the plant under observation migrates into a

new state-space region. For example, a plant which is operating in steady-state may incur no

matrix-update communication overhead at all.
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Since the performance of both the EKF and PWAKF approaches depend on the charac-

teristics of the application, in order to make generalized analysis, we introduce some abstract

application parameters. Fig. 3.10 summarizes the sources of processing delay which are con-

sidered during this analysis, and analysis parameters are described in Table 3.4.

As the number of states n needed in the plant model increases, so does the hardware-

software communication time (trd + twr), the software processing time (tps) and the hardware

processing time (tpl). For the EKF approach, the communication time is rather predictable:

during each update, the PS will read the n-word state vector from the PL, and write back the

n2 + nm+ p words of A,C, and E.

For the PWAKF approach, the communication time depends on the number of elements

in the linear state-space model which are not constant across regions. This ranges from 0 (a

trivial case in which the plant model was already linear), to n(n + m) + p(n + m), meaning

the entire model (A,B,C and D) needs to be transmitted during every region transition. This

latter case is quite unlikely as it requires every state variable in the model to appear in all

state update equations, all output equations, and be involved in a non-linear operation. For

example, consider the non-linear state update equation for a system consisting of two states,

and arbitrary constants cx.

xk+1 = f(xk, uk) =

 c1x
2
1 + c2x

2
2

c3x1 + c4x2 + u

 (3.19)

Based on Equation 3.6, the non-linear model can be expressed as a piecewise affine model

with q regions, shown below.

xk+1 =

 mi,1 mi,2

c3 c4

x+

 bi,1 0

0 1


 1

u


∀i = 1, 2, ..., q

(3.20)

Slope (mi,x) and offset (bi,x) elements are introduced, and the vector containing the single

input u has been augmented with a constant 1 to accommodate the offset. Specific values
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are determined after partitioning and system identification; for example a simple point-to-

point procedure is described in [61]. During a region transition, only these entries need to be

updated in the PL memory, as they differ among regions.

For analysis, we use Equation 3.19 as a template for our non-linear plant model, and

modulate the “complexity” of the model by adding additional non-linear (quadratic) terms

based on parameter rnc, which ranges from 0 to 1. For example, if rnc=0.5, this indicates

half of all elements in the linear model are variables and therefore must be transfered during

a region transition. Plant model profiles based on this template consist of Low Complexity

(rnc=0.1), Moderate Complexity (rnc=0.5), and High Complexity (rnc=0.9).

Since the rate of region transition varies by application, we also introduce a transition rate

parameter rt which varies from 0 (i.e. there are no region transitions) to 1 ( i.e. a region

transition occurs every timestep). Finally, overall mixed hardware-software speedup is assessed

using Equation 3.21.

speedup =
tswb

tpl + tps + trdbn+ twrbrtnwb
(3.21)

We further define nwr (number of words to write back to the PL) as shown in Equation 3.22.

nwb = b(n(n+m) + p(n+m))rncc (3.22)

Analysis results based on Equation 3.21 and the application profiles are summarized in

Table 3.5. To manage the number of variables, we assume m = p = 1, which indicates a

single-input single-output system. The speedup of the hardware-software PWAKF in the best

case (rt = rnc = 0) and worst case (rt = rnc = 1) is compared to the hardware-software

EKF in Fig. 3.11. On average, the speedup for the PWAKF HW-SW approach is 62% larger

than the EKF HW-SW approach. Many times it is more useful to consider the maximum

update frequency, which can be determined by computing the inverse of the sum of all delays

in Fig. 3.10. Thus these results also indicate that the maximum update frequency will be in

the average case 62% higher using the PWAKF.



www.manaraa.com

41

Table 3.4: Performance Analysis Parameters

Symbol Description

n Number of states in linear state-space model

m Number of control inputs in linear state-space model

p Number of measurable outputs in linear state-space model

rnc Rate of non-constant entries in the linear state-space model

rt Plant region transition rate (transitions per unit timestep)

tps Time spent on the software processor (PS)

tpl Time spent on the hardware processor (PL)

trd Time spent by the PS reading from the PL

twr Time spent by the PS writing to the PL

trdb Benchmarked time for the PS to read a word from the PL

twrb Benchmarked time for the PS to write a word to the PL

tswb Benchmarked software-only implementation execution time

Table 3.5: PWAKF HW-SW Speedup vs. Software-Only Approach, with Varying Model Char-
acteristics

Low Complexity (rnc=0.1) Moderate Complexity (rnc=0.5) High Complexity (rnc=0.9)

n
rt 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

2 13.70 13.32 12.96 12.62 12.30 13.70 12.62 11.70 10.90 10.20 13.70 11.99 10.66 9.59 8.72
4 4.17 4.09 4.00 3.92 3.85 4.17 3.95 3.75 3.57 3.41 4.17 3.82 3.53 3.28 3.06
6 4.23 4.17 4.10 4.04 3.98 4.23 4.04 3.86 3.70 3.55 4.23 3.92 3.65 3.41 3.21
8 4.03 3.97 3.91 3.86 3.80 4.03 3.86 3.70 3.56 3.42 4.03 3.75 3.51 3.30 3.11
10 4.33 4.27 4.22 4.17 4.11 4.33 4.16 4.00 3.85 3.71 4.33 4.05 3.80 3.58 3.38
12 4.80 4.74 4.69 4.64 4.58 4.80 4.61 4.44 4.28 4.13 4.80 4.49 4.22 3.98 3.76
14 5.03 4.98 4.92 4.87 4.82 5.03 4.84 4.67 4.50 4.35 5.03 4.72 4.44 4.19 3.97
16 5.44 5.38 5.33 5.27 5.22 5.44 5.24 5.05 4.88 4.72 5.44 5.10 4.80 4.54 4.30
18 6.17 6.11 6.04 5.98 5.93 6.17 5.94 5.74 5.54 5.36 6.17 5.79 5.46 5.16 4.90
20 6.60 6.53 6.47 6.41 6.34 6.60 6.36 6.14 5.93 5.74 6.60 6.20 5.84 5.53 5.25
22 6.95 6.88 6.82 6.75 6.69 6.95 6.70 6.47 6.26 6.06 6.95 6.53 6.16 5.83 5.53
24 7.28 7.21 7.15 7.08 7.02 7.28 7.02 6.79 6.56 6.36 7.28 6.85 6.46 6.12 5.81
26 7.65 7.58 7.51 7.45 7.38 7.65 7.38 7.14 6.90 6.69 7.65 7.20 6.79 6.43 6.11
28 8.00 7.93 7.86 7.79 7.72 8.00 7.72 7.46 7.22 7.00 8.00 7.53 7.11 6.73 6.40

3.6.2.3 Discussion

Although in the hardware-only implementation the PWAKF does not offer as large a

speedup as the EKF approach when compared to the equivalent software-only implementation

(Table 3.3), when the timing of a complete application is considered, the PWAKF approach

outperforms the EKF approach due to the reduced time spent in the PS and on communi-

cation. At the hardware level, speedup for the hardware-software PWAKF could be further

increased by reconsidering steps 7-10 of the PWAKF algorithm, which are rather trivial with

respect to the time complexity of the Fadeev algorithm and would be significantly faster if

computed in a separate functional unit. This approach was used in [1], reporting an additional

62% performance increase compared to the Fadeev-only hardware unit.
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Table 3.6: PWAKF HW-SW Update Time (µs), with Varying Model Characteristics

Low Complexity (rnc=0.1) Moderate Complexity (rnc=0.5) High Complexity (rnc=0.9)

n
rt 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

2 4.8 5.0 5.1 5.2 5.4 4.8 5.2 5.7 6.1 6.5 4.8 5.5 6.2 6.9 7.6
4 19.7 20.1 20.6 21.0 21.4 19.7 20.8 21.9 23.0 24.1 19.7 21.5 23.3 25.1 26.9
6 43.2 43.8 44.5 45.2 45.9 43.2 45.2 47.3 49.4 51.4 43.2 46.6 50.1 53.5 57.0
8 75.2 76.3 77.4 78.5 79.6 75.2 78.5 81.8 85.1 88.4 75.2 80.7 86.2 91.7 97.2
10 115.6 117.1 118.6 120.1 121.7 115.6 120.4 125.2 130.1 134.9 115.6 123.7 131.9 140.0 148.2
12 164.8 166.7 168.6 170.6 172.5 164.8 171.4 178.0 184.6 191.3 164.8 176.1 187.4 198.7 210.0
14 222.4 224.8 227.3 229.8 232.3 222.4 231.1 239.7 248.4 257.1 222.4 237.3 252.2 267.1 282.0
16 288.5 291.5 294.6 297.6 300.6 288.5 299.5 310.6 321.6 332.7 288.5 307.5 326.6 345.7 364.7
18 363.2 366.9 370.6 374.3 378.1 363.2 376.8 390.5 404.2 417.8 363.2 386.8 410.4 434.0 457.6
20 446.4 450.8 455.2 459.6 464.0 446.4 462.9 479.5 496.1 512.6 446.4 475.1 503.8 532.5 561.2
22 538.0 543.2 548.3 553.4 558.5 538.0 557.8 577.5 597.3 617.0 538.0 572.4 606.8 641.2 675.6
24 638.4 644.3 650.2 656.2 662.1 638.4 661.5 684.7 707.9 731.1 638.4 678.8 719.3 759.7 800.2
26 747.2 753.9 760.7 767.5 774.2 747.2 774.1 801.0 827.9 854.9 747.2 794.2 841.3 888.4 935.5
28 864.5 872.2 879.9 887.7 895.4 864.5 895.4 926.3 957.3 988.2 864.5 918.6 972.7 1026.9 1081.0
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Figure 3.11: Mixed hardware-software speedup over software vs. number of states: PWAKF
shows an average 62% performance increase over hardware-software EKF. The large speedup
for small n is due to unavailability of NEON instructions at that problem size, highlighting the
high impact that these instructions have on software execution time.

Theoretically, for the EKF linearization occurs at runtime (during each discrete time step),

while for the PWAKF the function is linearized offline and stored in state-space form. Accu-

rate state tracking for the EKF depends (in part) on the time step being sufficiently small to

support the assumption that the plant evolves linearly within the time step; likewise for the

PWAKF, good tracking behavior depends on the regions being sufficiently small to assume

linearity within that region of the plant’s state-space. Therefore, EKF may be preferable if

the number of regions needed to achieve the desired accuracy for the PWAKF method induces

substantial memory overhead, such as for systems with very fast oscillations. As a straightfor-

ward enhancement to the PWAKF, introducing a small amount of hysteresis (e.g. overlap) in

the region boundaries could further reduce overhead for noisy or oscillatory systems.
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In terms of speedup, it is evident larger problems will benefit more than smaller ones.

However, for any application, time-deterministic computations allow a control engineer to fo-

cus on plant dynamics rather than worry about (and compensate for) non-idealities in the

computational platform.

3.6.3 Power Consumption

The Xilinx Power Estimator tool [62], combined with signal activity rates obtained by

simulating our largest hardware design (n = 28), estimates the Zynq chip to consume 722mW

overall, including dynamic and static power. Of this, the coprocessor (PL) alone consumes

149mW. Therefore the approach is power-efficient and is suitable for many embedded systems

with limited power budgets.

3.7 Conclusion

The PWAKF coprocessor is a novel approach to hardware acceleration for Kalman-filter

state estimation, establishing a new reference point in the mixed hardware-software design con-

tinuum. By replacing the standard EKF methodology with a fully linearized one, it offers a

speedup over both the pure software approach, as well as the hardware-software EKF approach,

without sacrificing the modeling expressiveness that software enjoys. There are several avenues

for further exploration. Placing constraints on the model partitioning scheme (e.g. hyper-

cubes [60]) may enable the region-identification task to be placed in hardware. Of additional

interest is the possibility to integrate the Kalman Filter with prior work in FPGA-based LQR

control [21] to form more advanced FPGA-based controllers. The ability to develop a complete

system on an FPGA brings with it the promise of high-speed, low-power, tightly integrated

control systems.
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CHAPTER 4. HARDWARE BASED KALMAN FILTER

4.1 Introduction

Real time systems are subject to random delays form a variety of sources: network, shared

compute resource (task switching), etc. Sampling or actuation (e.g. control) jitter causes

control system degradation due to the control signal not arriving at the right time. This can

lead to an increase in the cost (i.e. energy) required to control system–or in the worst case,

instability. Constant delay can easily be compensated for at design time, but jitter cannot. A

study on the impact of jitter on motion controllers[17] found that 8% control jitter (that is,

the magnitude of the jitter is 8% of the sample period) can result in regulation error twice as

much as sensor noise, causing a 90% increase in regulation error. Overall this jitter contributes

significant error in high frequency tracking. To mitigate the issue in [17], calibrating factors

are added to the controller to reduce the impact of jitter.

Online compensators are often proposed as means to reduce the impact of jitter, for exam-

ple using timestamps[16] or a mixture of control theoretic and scheduling compensations [63].

The work in [63] reported a O(n4) runtime complexity overhead, and significant memory re-

quirements (relative to common microcontroller) for a table-oriented version. High-overhead

compensatory measures tend to place limitations on the maximum sample rate which can be

reached in such a system.

The alternative vision in this work, which we reiterate here, is to begin with a time-

deterministic compute platform rather than adding compensatory measures after issues are

observed. As demonstrated in Chapter 2, hardware oriented designs provide higher update

rates and lower jitter than software or mixed approaches, ensuring system behavior matches

more closely with simulation. In fact, the magnitude of jitter for the main digital signal process-
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Figure 4.1: Algorithm Refactoring for Fully Hardware-Based PWAKF

ing component of control loop is reduced to the jitter on the system oscillator (picosecond-scale).

By contrast, the degree of jitter in commercially available real-time controllers is typically rang-

ing from hundreds of microseconds to tens of microseconds [17]. Note that we do not propose

eliminating the software processor altogether, as it is needed to process lower-criticality tasks

and handle exceptional conditions in the hardware.

In this chapter we describe the concepts and supporting hardware needed to transition the

mixed hardware-software PWAKF architecture from the previous chapter to a fully hardware-

oriented design which retains the expressiveness of piecewise-affine modeling. This transition is

illustrated in Fig. 4.1, in which (a) depicts the architecture resulting from the previous chapter.

Meanwhile, (b) depicts the result of the current chapter. Note that the software box is empty–

the software processor is still present, but the resources used to compute the software portion

of (a) can be reallocated to the other tasks which the system must perform (e.g. non-critical

or non-timing sensitive tasks).
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4.2 Point Location Algorithm

We recall the basic mathematical representation of a piecewise-defined linear model from

Equation 3.6. The key challenge in implementing this piecewise-defined modeling approach can

be termed as the “point location problem”, a term which arises in computational geometry [64].

That is, if we interpret the current state vector xk as point (x1, x2, ...xn) in n-dimensional

geometric space, we would like to determine i, the unique index of the region to which point

xk belongs. Once we have i, we have access to the A,B,C and D matrices which describe the

region’s linear geometry, and we can evaluate the linear state-space function in the normal way

to obtain xk+1 or y.

Discussion of hardware-based implementations of piecewise-affine functions appears in [65],

using an in-hardware transformation step to allow non-uniformly sized regions. More imple-

mentations appears in [60] and [66], including comparisons of several ways to partition a multi-

dimensional function into regions. The work in [60] demonstrates how a hyperrectangular

partitioning approach which allows rectangles of differing size (“multi-resolution” hyperrectan-

gles) leads to a more memory-efficient implementation, since regions which change slowly can

be represented by large hyperrectangles and regions which change quickly by small ones. The

FPGA-based implementation uses a search tree methodology to enable a fast solution to the

point location problem. In general, the main difference among implementations concerns the

targeted function partitioning scheme. The partitioning scheme directly impacts the hardware

resources and memory resources required to implement an arbitrary function. Region shapes

include polytopes, simplicies, hyperrectangles, and other minor variants.

The multi-resolution method in [60] effectively exchanges FPGA memory for FPGA recon-

figurable resources, as the number of LUTs and Flipflops increases with the complexity of the

model. Furthermore, the number of clock cycles needed to identify region i is not constant due

to the search tree structure. This introduces a small amount of timing uncertainty into or model

of computation, which we wish to avoid. In this work we uses single-resolution hyperrectangular

regions. This scheme is less memory-efficient than the multi-resolution case, but dramatically

simplifies the hardware design and ensures a constant time O(1) solution to the point-location
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Figure 4.2: State-space partitioning for a system with two state variables.

problem. In contrast to earlier work in the area, the input to our hardware functional unit is

in floating-point representation to allow easy integration with our existing floating-point based

pipeline discussed in earlier chapters. This requires a straightforward float-to-integer step as

appearing in Algorithm 3.

Consider the partitioning scheme for a two-state model illustrated in Fig. 4.2 which uses

a two’s-complement binary value to identify each region. We define symbol td to describe the

number of bits allocated to uniquely identify each region for a particular dimension (or axis)

d of n-dimensional space. Thus for a particular value of td there are rd = 2(td) partitions in a

given dimension.

For Fig. 4.2a, the address used to locate the active coefficient set will contain two bits for

the x1 state and two bits for the x2 state. For Fig. 4.2b, the address will have two bits for the

x1 state and one bits for the x2 state. If td = 0, this indicates a degenerate case in which state

variable xd is mapped to a domain consisting of a single region: no bits are used from xd to

produce the address.

In this approach we allow each dimension to have different value of td. If we were to require

them to be the same–e.g. rd partitions in all dimensions–the storage requirements becomes

rndn
2 which is highly inefficient, especially for models which are only non-linear on one or a

few dimensions. Thus, avoiding this restriction the regions become hyperrectangles rather than

hypercubes. We do place some constrains on the model and the partition in order to simplify

the hardware implementation. Given rd partitions for dimension d, the state variable xd has a

domain in rd/2 ≤ xd ≤ rd/2.
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The algorithm for solving the point location problem therefore becomes quite simple.

Whereas [60] effectively concatenates input bits based on values of ti known at synthesis time,

Algorithm 3 uses a “sliding window” using multiplexers to construct the base address in the

coefficient memory based on runtime values of ti. This runtime-variable approach may be of

interest for rapid prototyping; for IP block generation, it makes more sense to hardcode the var-

ious problem parameters and thereby produce a more resource-optimized implementation. In

either case, this approach is directly analogous to how a software system computes an address

for an n-dimensional array which is arranged contiguously in memory.

Algorithm 3 Solution to point location problem

1: procedure FindRegion

2: out← 0

3: lb← 0

4: acc← 0

5: for i← 0 ... n do

6: xf ← floor(state[i])

7: acc← acc+ t[i]− 1

8: ub← lb+ acc

9: out(ub : lb)← xf(ub : lb)

10: lb← ub

11: baseaddr ← out ∗ sizeofmodel

The hardware which supports this is shown in Fig. 4.3. The pipeline in Fig. 4.3b imple-

ments the concept appearing in Algorithm 3, while Fig. 4.3a illustrates how this functional unit

integrates into the broader architecture. It is only necessary to instantiate a single such func-

tional unit because we have, by convention, left-aligned column vectors within their respective

memory block. That is, when the final updated state vector xk+1 emerges from the Fadeev

systolic array, it will consist of a column vector emerging sequentially, word-by-word, from the

left-most output bus. Our new functional unit need only monitor this bus, and feed the new

region base address back to the central controlling state machine.

In summary, the process of mapping a nonlinear function into the piecewise-affine Kalman

Filter is as follows.
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Figure 4.3: Hardware Solution to Point Location Problem

1. Determine an appropriate number of partitions td per state-space dimension. This is

dependent on the on the structure of the model. The choice represents a tradeoff between

overall fitting error and the memory required to store the resulting coefficient sets.

2. Map the original function domain onto the new indexed domain using a transformation

factor Tf . For example, let td = 2: if f(xd) = sin(xd),−π ≤ xd ≤ π, then using Tf = 2π/8

we can create a function with transformed domain f ′(xd) = sin(Tfxd), −4 ≤ xd ≤ 4.

Doing this offline reduces hardware complexity.

3. Determine the coefficients for each region. For a nonlinear function f(x1, x2, ..., xn) we

need to develop an approximation f̂(x1, x2, ..., xn) = m1x1 +m2x2 + ...+mnxn + b. This

process is detailed in the following section.

4. Reform the coefficients into our standard A,B,C and D matrices. There will be one set

per hyperrectangle.

5. If it has not been done so, transform the model from continuous-time domain to the

discrete time domain (e.g. using zero-order hold) with a sampling period equal to the

desired sample period of the Kalman Filter.
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6. Map the set of A,B,C and D matrices into a 1-dimensional memory array. Careful

memory mapping enables a constant-time solution to the point location problem (Algo-

rithm 3). More specifically, the coordinate (x1, x2, ..., xn) which yields the coefficients for

region i defines the memory address for that region: the least-significant td bits of each

component xd are concatenated to form a globally unique address.

4.3 Piecewise Affine Conversion Algorithm

The “point-to-point” method is normally only discussed in the context of simple 2- or 3-

dimensional functions. In this section we describe the model conversion scheme in the most

general way–that is, for n-dimensional space–in order to encompass the broadest possible set of

models. One of the features of this approach is that the application designer has exact control

over how many partitions are generated for each dimension of a multidimensional model, and

therefore can directly make tradeoffs between overall accuracy and memory consumption.

We start with a continuous-time model, such as that which is developed through funda-

mental differential equations.

ẋ =



ẋ1

ẋ2
...

ẋn


= f(xk, uk) =



f1(x, u)

f2(x, u)

...

fn(x, u)


(4.1)

We wish, through some procedure, to transform this expression into a set of state-space

models, each one having the following continuous-time piecewise-affine form.



ẋ1

ẋ1
...

ẋn


=



A1,1 A1,2 . . . A1,n a1

A2,1 A2,2 . . . A2,n a2
...

...
. . .

...
...

An,1 An,2 . . . An,n an





x1

x2
...

xn

1


+



B1,1 B1,2 . . . B1,n b1

B2,1 A2,2 . . . B2,n b2
...

...
. . .

...
...

Bn,1 Bn,2 . . . Bn,n bn





u1

u2
...

um

1


(4.2)
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We make an observation to simply discussion. Equation 4.2 can be simplified to the following

using block matrices.



ẋ1

ẋ1
...

ẋn


=

[
An×n an×1 Bn×m bn×1

]


xn×1

1

um×1

1


(4.3)

Therefore we may target, without loss of generality, the following much-simplified form.

ẋ = Mix (4.4)

Discussion up to this point applies identically to the output expression (e.g. g(x, u), and

the corresponding C and D matrices). We can now divide the algorithm into two main tasks.

1. Sample the nonlinear vector-valued function f(x, u) (that is, evaluate each fj(x, u), ∀j =

1, 2, . . . , n) at integral intervals while applying a selected (invertible) scaling factor Tf to

each x. These points should cover the complete domain of interest.

2. For each of the n functions, construct an n-dimensional plane using each sample point and

its n neighbors. The equation of each plane contains the coefficients needed to produce

Mi.

To reduce notation, we define a set of functions f ′j through which each of the domain scaling

factors Tf can be applied to each nonlinear state transformation function fj .

f ′j(x1, x2, . . . , xn) = fj(Tf1x1, Tf2x2, . . . , Tfnxn)

∀j = 1, 2, . . . , n

(4.5)

Then, given a particular sample point at coordinates (x1, x2, . . . , xn), determining the set

of corresponding n-dimensional planes consists of solving the set of equalities described by

Equation 4.6 by using the point’s n direct neighbors. Each solution will consist of a set of slope

terms m and an intercept term b. As an example, Matlab can be used to solve each equality

by employing the null function.
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x1 x2 . . . xn−1 xn f ′j(x1, x2, . . . , xn) 1

(x1 + 1) x2 . . . xn−1 xn f ′j((x1 + 1), x2, . . . , xn) 1

...
...

. . .
...

...
...

...

x1 x2 . . . (xn−1 + 1) xn f ′j(x1, x2, . . . , (xn−1 + 1), xn) 1

x1 x2 . . . xn−1 (xn + 1) f ′j(x1, x2, . . . , (xn + 1)) 1





mj,1

mj,2

...

mj,n+1

bj


= 0

∀j = 1, 2, . . . , n

(4.6)

The solutions to these equalities are collected to form the hyperplane expressions.

mj,1x1 +mj,2x2 + . . .+mj,nxn + (mj,n+1)f
′
j(x1, x2, . . . , xn) + bj = 0

∀j = 1, 2, . . . , n

(4.7)

We refactor the expression to produce the classic affine form.

f ′j(x1, x2, . . . , xn) =
mj,1

−(mj,n+1)
x1 +

mj,2

−(mj,n+1)
x2 + . . .+

mj,n

−(mj,n+1)
xn +

bj
−(mj,n+1)

∀j = 1, 2, . . . , n

(4.8)

Finally, we may populate Equation 4.4 with the computed coefficients for region with index

i.

ẋ = Mix =



m1,1

−(m1,n+1)
m1,2

−(m1,n+1)
. . .

m1,n

−(m1,n+1)
b1

−(m1,n+1)

m2,1

−(m2,n+1)
m2,2

−(m2,n+1)
. . .

m2,n

−(m2,n+1)
b2

−(m2,n+1)

...
...

. . .
...

...

mn,1

−(mn,n+1)
mn,2

−(mn,n+1)
. . .

mn,n

−(mn,n+1)
bn

−(mn,n+1)





x1

x2
...

xn

1


(4.9)

This procedure is replicated for each sample point (x1, x2, . . . , xn) in the transformed domain

of the vector-valued function f(x,u). Since region boundaries fall on integer-value coordinates,

each sampled coordinate yields a unique coefficient matrix described by Equation 4.9. Once

the continuous-time matrices are computed, they can be converted into discrete time through

usual means (e.g. zero-order hold).
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4.4 Implementation Results

4.4.1 Memory Requirements

Most of the schemes described in this dissertation make tradeoffs between memory and

computation. Therefore it is necessary to analyze the overall memory requirements for the

fully hardware-based solution described in this Chapter. The memory required to represent the

complete state-space model in the hypercube case Mhc (that is, requiring t1 = t2 = ... = tn = t)

is shown in Equation 4.10. The symbols n,m, and p are as originally defined in Section 2.5.1

and allow us to compute the number of words needed for a single state-space region. The

symbol Mk is the additional “overhead” memory for the various Kalman Filter matrices (e.g.

K, P, Q, R, matrix scratch space, etc). We let Mk = 10n2 based on our implementation.

Mhc = 2nt(n2 + nm+ np+mp) +Mk (4.10)

Meanwhile the memory required for hyperrectangles Mhr is shown below.

Mhr = 2(
∑n

d=1 td)(n2 + nm+ np+mp) +Mk (4.11)

The latter case will always consume less or equal memory than the former; more importantly

it will consume much less memory in the average application. More realistically, however, it

must be recalled that the Fadeev algorithm operates on square matrices. Therefore without

additional architectural optimization, each matrix will consume an equal-sized cell of size n2,

with many zeroed memory locations for simple models. The term 4n2 in Equation 4.12 assumes

that the full A,B,C and D matrices are included. In most typical cases there is no need to reserve

space for the D matrix; it is factored in an effort to identify upper bounds.

Mhr = 2(
∑n

d=1 td)4n2 +Mk (4.12)

In Fig. 4.4, Equation 4.12 is applied using the total available block RAM on two available

Xilinx FPGAs [67, 68] to determine the maximum number of partitions which can fit given a

particular size state-space model n. The Spartan 6 in (a) will be used as a test-bed for the
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examples in the next chapter, and the Zynq in (b) is the same as that used in the previous

chapter. For analysis purposes we constrain m = p = 1 (e.g. single-input single-output system)

since n is the dominating term.

The results of the analysis indicate that rather complex models can be implemented de-

pending on the amount of block RAM available on the selected chip. For example, the selected

Zynq can contain 8192 regions for a 12-state model whereas the much smaller Spartan 6 can

only contain 256 regions for a 12-state model. Within both the Zynq and Spartan 6 product

families there are a number of model numbers with significantly more block RAM, so these

results merely provide a reference point. The application designer can use the results in this

section to estimate the required block RAM needed to support a given application.

4.4.2 Performance

With the modification described in this chapter, the overall runtime of the hardware is

analytically determined by Equation 3.18 from the previous chapter. The software workload

has been eliminated, as all computation is performed in the hardware. The elimination of the

software and communication portion from the algorithm does contribute to a small additional

speedup vs. the reference software implementation described in the previous chapter (typically

1% faster than the mixed hardware-software PWAKF). In Section 3.6.2.2 the transition rate rt

was introduced to parameterize the amount of data which needs to be transferred between the

software and hardware components of the algorithm. The performance of the hardware-only

PWAKF is therefore equal to the hardware-software PWAKF with rt = 0. The final runtime

comparison is shown in Table 4.1.

4.5 Conclusion

Our approach is quite simple and generic, and with the on-chip memory it is possible to

implement a wide range of models. The additional logic to implement Algorithm 3 consumed

just 440 LUTs–for the approach in which partition parameters (td) and problem size parameters

(n,m,n) are encoded at synthesis time the design would be even smaller. However, for models

consisting of a very large number states or requiring many regions to reach the desired state
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Table 4.1: Hardware PWAKF & Hardware-Software EKF vs. Software EKF

EKF SW

200Mhz

Time (ms)

PWAKF HW (45Mhz) EKF HW-SW (45Mhz)

n
Time

(ms)
Speedup

Time

(ms)
Speedup

2 0.066 0.004 14.89 0.024 2.78

4 0.082 0.019 4.24 0.039 2.09

6 0.182 0.043 4.26 0.075 2.43

8 0.302 0.075 4.04 0.12 2.42

10 0.500 0.115 4.33 0.19 2.68

12 0.790 0.164 4.80 0.26 2.99

14 1.119 0.222 5.03 0.35 3.15

16 1.568 0.288 5.44 0.46 3.42

18 2.240 0.363 6.17 0.58 3.88

20 2.943 0.446 6.59 0.71 4.17

22 3.737 0.538 6.95 0.85 4.41

24 4.646 0.638 7.28 1.00 4.62

26 5.716 0.747 7.65 1.17 4.86

28 6.914 0.864 8.00 1.36 5.08

tracking performance, on-chip FPGA memory may be exhausted. For example, many partitions

may be needed to retain accuracy for fast oscillating behavior of non-constant amplitude. In

this case it will be necessary to explore a solution which involves access to off-chip memory.

Use of off-chip memory would support models of nearly arbitrary complexity at the expense

of higher power consumption and more complex hardware design. The key design tasks for

the application developer is determining which dimensions of a multi-dimensional model to

partition, and how many partitions to use for these. This requires an application-specific

sensitivity analysis (e.g. via simulation) to balance model complexity with the overall tracking

performance of the Kalman Filter.



www.manaraa.com

56

2 3 4 5 6 7 8 9 10 11 12 13 14
0

500

1000

1500

2000

2500

20
48

10
24

51
2

51
2

25
6

25
6

12
8

12
8

12
8

64 64 64 64

n (Number of States)

M
ax

im
um

 N
um

be
r 

of
 R

eg
io

ns

(a) Spartan 6 XC6SLX45

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

7
x 104

65
53

6
32

76
8

16
38

4
81

92
81

92
40

96
40

96
40

96
20

48
20

48
20

48
20

48
10

24
10

24
10

24
10

24
10

24
51

2
51

2
51

2
51

2
51

2
51

2
51

2
51

2
25

6
25

6

n (Number of States)

M
ax

im
um

 N
um

be
r 

of
 R

eg
io

ns

(b) Zynq XC7Z020

Figure 4.4: Estimating Maximum Model Complexity
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CHAPTER 5. CASE STUDIES

5.1 Introduction

Up to this point we have characterized the PWAKF from an application-agnostic viewpoint.

We now consider three applications-specific case studies in the following sections: a rotating

pendulum, a quadrotor helicopter, and a battery monitoring application. The goal of multiple

examples is to highlight different aspects of the design process.

AXI Bus 

Crossbar

Plant on 

Chip

Kalman

Filter

Slave 

Interface

Master 

Interface
Custom IP 

Blocks

UART

Spartan 6 FPGA

Physical 

Plant

I/O

Controller

MicroBlaze

Software

LQR 

Controller

Figure 5.1: Architecture used for Case Studies.

In order to enable power analysis, as described in the next section, we employed Digilent’s

Atlys board, which features the Spartan 6 XC6SLX45. The XC6SLX45 contains 58 DSP units.

Equation 3.17 suggests that if 4 DSPs are allocated per node, the largest size state-space model

is 7, with 6 left over for a soft processor. If 1 DSP is allocated per node, the maximum value of

n increases, but the operating frequency of the circuit decreases. The XC6SLX45 is one of the

smallest variants in the Spartan 6 line; therefore a larger FPGA will support larger models.

The ARM processor from the previous chapters is replaced by a soft processor, shown

in Fig. 5.1. Soft processors are becoming more popular for not only computer architecture

research, but also within commercial product designs. Xilinx’s MicroBlaze RISC soft processor
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requires 1 cycle for most instructions and supports a maximum frequency of 210Mhz. Use of

the soft processor coupled to the PWAKF hardware within the Spartan 6 also highlights the

possibility of a single-chip design using a commodity FPGA–that is, one which does not require

additional power-hungry external DDR memory or other external I/O bridge components, as

do non-SoC processors. Although, with the addition of external DDR memory, Linux can be

targeted to the soft processor as well, which makes the support of advanced communication

interfaces such as Ethernet much easier. MicroBlaze was configured for performance, and

consumed 2366 LUTs, or roughly 9% of the available total.

5.2 Assessing System Power

For the case studies, we wanted the ability to accurately estimate the power consumption

of the processor. The Zedboard includes a single shunt resistor for measuring the current of

the overall board, but this does not provide the ability to estimate power for the different

components of the board. By contrast the Atlys board provides facilities for measuring each of

the power rails on the board (3.3V, 2.5V, 1.2V, 1.8V, 0.9V) with accuracy better than 1%. We

are most interested in the 1.2V rail which powers the FPGA core logic. This is also the power

rail which would be directly influenced by the problem size scaling considered in this work.

Power related to I/O is negligible in these tests as we do not make use of external peripherals.

Digilent’s Adept software [69] is used to retrieve current and power readings from the board.

The power analysis results follow.

• Intel Pentium M: 20.8W to 35W TDP [70].

• Intel Atom: 1.3W to 8.5W TDP [71].

• ARM A9 (within Zynq SoC) : 0.6-1.5W

• Spartan 6 (+MicroBlaze): 0.315W

The referenced Intel processors are common for embedded platforms where performance is

critical. It is important to consider that the Intel processors in question do not contain internal

memory and require additional integrated circuits to interface with basic peripheral devices.
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Therefore, Thermal Design Power (TDP) figures tend to under-estimate the total power in a

practical implementation.

The power consumption of the Spartan 6 was found to vary negligibly with design size (less

than 0.010W across all design sizes which fit in the device) and therefore the figure represents

an average. The power consumption appeared much more strongly impacted by the choice of

operating frequency. In short, the conclusion is that it is possible to maintain high Kalman

Filter performance at a level of power consumption which is 2 to 100 times lower than typical

processors, which in mobile applications can lead to longer battery runtime or enable the use

of smaller, lighter batteries.

5.3 Rotating Pendulum

Models based on the motion of a pendulum are often used as examples in control theory

literature. The motion is based on elementary physical laws and is relatively easy to test in

a laboratory setting. The plant discussed in this example consists of a electric servo motor

with a weighted rod attached. Much more complex pendulum arrangements exist; for exam-

ple a computer-based controller was designed in [72] to stabilize a triple inverted pendulum,

analogous to a model of a human standing on one leg.

5.3.1 Plant Model

The model of a rotating pendulum originally appearing in [73] is illustrated in Fig. 5.2. This

example is used to highlight the design process targeting the PWAKF from the control engi-

neer’s perspective. The differential equations which describe the plant motion are reproduced

in Equation 5.1.

θ̈ = − Bθ
ml2 + Jm

θ̇ +
K2

ml2 + Jm
Iα −

mgl

ml2 + Jm
sin(θ)

İα = −Rα
Lα

Iα −
K1

Lα
θ̇ − 1

Lα
u

(5.1)

This model contains a number of constants which are derived from characterization data

obtained from the physical plant. For designing a Kalman Filter to track the state of the

pendulum, the measurement uncertainty (statistical variance of the noise) which accompanies
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+

‐

Figure 5.2: Model of rotating pendulum

this characterization procedure can be used to guide the selection for the system noise co-

variance matrix Q, and the measurement uncertainty which characterizes the position sensor

of the pendulum will guide the selection of the measurement noise covariance matrix R (see

Algorithm 2).

The expressions of Equation 5.1 can be refactored into a more explicit three state format as

follows. Specific constants are obtained from [73] and will not be derived. We let x1 = θ, the

pendulum angle, x1 = θ̇, the the pendulum angular velocity, and x3 = Iα, the motor current.

ẋ1 = x2

ẋ2 = −40.69sin(x1)− 0.1x2 + 8.996x3

ẋ3 = −28.89x2 − 722.2x3 + 555.5u

y = x1

(5.2)

5.3.2 Conversion to Piecewise Affine Model

Examining Equation 5.2 we consider the trigonometric function sin, the only nonlinear

function in the model. In typical linearization processes this could be replaced by a small-

angle approximation. However, here we would like to maintain modeling accuracy over the full

domain of the sin function and therefore consider the piecewise-affine approach. By replacing

the expression sin(x1) with another of the form mix1 + bi We can produce a set of matrices to

fit the form described by Equation 3.6. Notice the symbols mi and bi which describe slope and

intercept coefficients unique to each region denoted by index i.
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Ai =


0 1 0

−40.69mi −0.1 8.996

0 −28.89 −722.2

 , Bi =


0 0

−40.69bi 0

0 555.5

 ,
Ci =

[
1 0 0

]
, Di =

[
0

]
∀i = 1, 2, . . . , 8

(5.3)

We must determine an appropriate number of index bits td to allocate to each state-space

dimension. Since only the second dimension (state) contains a nonlinearity we select t1 = 0,t2 =

3 and t3 = 0, leading to a state space consisting of 8 regions (ie q = 8 as per Equation 3.6).

We must now identify specific values for each [mi, bi] pairing, and do so in a way which

remaps the sin function onto our new indexed domain. In general, for a nonlinear function

f(x1, x2, ..., xn) we need to develop an approximation f̂(x1, x2, ..., xn) = m1x1 + m2x2 + ... +

mnxn + b. For a function of a single variable this leads to a set of line segments.

A critical divergence from the work in [73] is the domain transformation leading to integral

breakpoints at region boundaries. This is the required scheme for targeting the architecture

described in Section 4.2. If f(x2) = sin(x2),−π ≤ x2 ≤ π, then we can create a function with

transformed domain f ′(x2) = sin(2πx2/8), −4 ≤ x2 ≤ 4. Thus our domain transformation

factor is 2π/8. To determine the coefficients bi and mi for each region we can follow the

generalized procedure from Section 4.3. However, this example is quite simple so we need only

evaluate y = sin(x) at x = −4,−3, . . . , 2, 3 and determine the equation of the lines between

each (x, y) pairs. For software-based simulations, the simple Matlab example in Listing 5.1

demonstrates one method, where the structure memory contains the state-space model for

each of the 8 regions. Wrapping on the edges can also be handled here.
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1 f unc t i on [ s s ] = f i n d r e g i o n ( x2 )

2 i =0;

3 i f ( −4<= x2 && x2 <−3)

4 i =1;

5 e l s e i f ( −3<= x2 && x2 <−2)

6 i =2;

7 e l s e i f ( −2<= x2 && x2 <−1)

8 i =3;

9 e l s e i f ( −1<= x2 && x2 <0)

10 i =4;

11 e l s e i f ( 0<= x2 && x2 <1)

12 i =5;

13 e l s e i f ( 1<= x2 && x2 <2)

14 i =6;

15 e l s e i f ( 2<= x2 && x2 <3)

16 i =7;

17 e l s e i f ( 3<= x2 && x2 <=4)

18 i =8;

19 end

20 s s = memory( i ) . s s ;

Listing 5.1: “FindRegion” Matlab example

For loading into hardware, the A,B,C and D matrices are mapped into into a memory

array for loading into the FPGA block RAMs. Note that in Table 5.1, region models are not

necessarily laid out sequentially in memory when negative values are included in the domain. It

is this careful memory mapping which enables a simple solution to the point location problem

(Algorithm 3).

5.3.3 Performance

Using Equation 3.18 we know, without the need for benchmarking, that the update time

for the hardware-based PWAKF would be 10.8µs, and this figure can be fed into the control

engineer’s simulation for determining system performance before requiring physical hardware.
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Table 5.1: Pendulum Model Memory Arrangement

i Model Address mi bi

0 000b 0.707 0.0

1 001b 0.293 0.414

2 010b -0.293 1.586

3 011b -0.707 2.828

-4 100b -0.707 -2.828

-3 101b -0.293 -1.586

-2 110b 0.293 -0.414

-1 111b 0.707 0.0

(a) Comparison of piecewise-linear behavior vs. original dif-
ferential equations.

(b) Motion through state-space with a small impulse
(blue/left) and a large impulse (green/right)

Figure 5.3: Pendulum Motion

Based on Equation 4.12, the estimated memory requirements is 1008 words; therefore the design

easily fits into the selected Spartan 6 device.

An interesting point to make is that due to the natural wrapping behavior of binary numbers

of limited width, we need only implement regions for one period of the sinusoidal wave, since

region traversal will automatically wrap from edge to edge. For example, the region denoted

by i = −5, which appears to be out of bounds, is implicitly aliased to the region at i = 3.
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Figure 5.4: Quadrotor helicopter architecture (reproduced from [77]).

5.4 Quadrotor Helicopter

The quadrotor helicopter is an example of a complex electromechanical system consisting

of four rotors which relies on an Inertial Navigation System (INS) as a means to maintain

flight stability and enable complex aerial maneuvers. These systems often rely on PID based

control [74, 75] but increasing interest is vested in a state-space model-based approach. Heli-

copter flight dynamics are in general very complicated and therefore modeling and simulation

is critical in the design process. A general overview of this topic appears in [76].

5.4.1 Plant Model

A methodology was proposed in [77] to characterize the various components of the commercially-

available GAUI 330X-S quadrotor helicopter (Fig. 5.4) with a 2100mAh ( 23.3Wh nominal)

battery. A major result consisted of determining an reduced-order 12-state model and using it

to develop an LQR controller. The number of states depends on the complexity of the sensor

system and the intended degree of maneuverability.

The experimental setup in [77] consists of 12 infrared cameras for motion capture, having a

10ms update rate, which are send to a PC where quaternions are converted to Euler angles in
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Figure 5.5: Overall control system setup. The control signal uS0 is computed on the PC and
then transmitted to the helicopter (reproduced from [77]).

specialized control software. In addition, the control value uS0 is computed on the PC, which

includes throttle, aileron, elevator, and rudder values (Fig. 5.5).

In order to execute the control loop on the quadrotor itself, which would enabling more

complex autonomous behavior such as optimal path planning [78], the computation should

meet the 10ms deadline and also maintain low power usage in order to maximize battery life.

5.4.2 Conversion to Piecewise Affine Model

In the PWAKF approach, the use of a piecewise-defined model is supported, but not re-

quired. In this case study we elected to maintain the single-region linear model proposed by

the original author–that is, for each model dimension (state) we have td = 0 and q = 1 as per

Equation 3.6.

It is possible to increase the model accuracy by partitioning non-linear behavior into multiple

piecewise models. For example, the relationship between battery State of Charge and terminal

voltage was modeled in a stateless way with a simple linear fit, due to a lack of sensors on the

hardware platform. Otherwise, the accuracy could be significantly enhanced by using a more

sophisticated model such as that discussed in Section 5.5. For a fully autonomous platform,

accurate assessment of available energy is critical; for example, the study in [79] seeks to select

a safe landing space for a quadrotor helicopter based on energy expenditure. That being said,
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ultimately it would be up to the application developer to determine whether the increased

accuracy is beneficial from a control standpoint.

5.4.3 Performance

Based on Equation 3.18 the runtime for a 12 state model using the PWAKF coprocessor

is 164µs, which easily meets our 10ms deadline, and based on Equation 4.12 the memory

requirements is 2016 words. Although this model fits in memory, if each node consumes 4

DSPs, a 12-state model will not fit into the XC6SLX45. It will however fit into any of the

several Spartan 6 devices which contain more DSPs. Adding additional model regions would

not impact the runtime, but would impact the memory requirements. Based on Section 5.2

the power consumption of the processor is negligible compared to typical processors used in

mobile robotics, and certainly compared to the 4 motors of the helicopter, which are capable

of consuming up to a peak 130W each.

5.5 Battery Monitoring

The following section details an extended case study on piecewise-affine Kalman Filtering

for tracking cell voltages in large batteries. It is based on results appearing in [80] and [81].

Unlike the previous examples, first-principles battery models rooted in chemical processes are

rather difficult to understand by non-domain experts. Therefore, empirical models which rely

on general data-fitting tools are overwhelmingly preferred in the engineering community.

5.5.1 Introduction

The advent of rechargeable, high energy density batteries has revolutionized our concepts

of portability and mobility. The continued effort to maximize the capacity and life of those

batteries enables an ever-expanding array of applications, as well as increasing levels of sophis-

tication. As the demands of the end-application increase, so does the need for a robust battery

management system (BMS) to maximize longevity, safety and fault-tolerance.

To guide the actions of any battery management system, typically a model of cell behavior

is used as a means to estimate battery State of Charge (SOC) and possibly State of Health
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Figure 5.6: The context of the proposed system, including the control feedback signals

(SOH). We use these terms to indicate a 0% to 100% fuel-gauge of the energy contained in the

cell, and the current capacity of the cell (based on its age), respectively. For example, a cell

could be fully charged (100% SOC), but have severely degraded runtime (low SOH).

However, developing technology to accurately monitor and manage these batteries in appli-

cations with heavy or unpredictable energy demands requires knowledge in multiple domains,

including material physics, mathematical modeling, statistical methods, and control systems.

This complexity is further compounded by the fact that such a system will likely need to

maintain a certain level of reliability over potentially years of deployment, during which the

characteristics of the battery itself are gradually changing due to manufacturing defects, phys-

ical aging, and environmental effects. Thus, monitoring capabilities must be dynamic and

adaptive. An generalized illustration of a system powered by a multi-cell battery appears in

Fig. 5.6. For electric vehicles, for instance, the number of cells connected in series can exceed

80, with battery currents easily exceeding 200A. Thus great care must be made in the BMS

design for such an application.

A number of papers have been published which employ Kalman filters to estimate SOC for

rechargeable cells such as Li-ion or LiPo [80, 82, 83, 84]. This method has been shown capable

of very accurate cell SOC estimation in real time. The use of the Kalman filter in battery

monitoring enables State of Charge estimates which are less sensitive to inaccurate initial cell

parameters and are less influenced by long-term drift. In short, by accurately modeling and
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predicting battery aging effects in-system, using a model such as the one proposed in [85], one

can maintain high operational efficiency over the full lifetime of the battery pack. This not only

enables more efficient control of cell balancing systems, which addresses the problems of cell

parameter mismatch and drift, but also increases the accuracy of the system’s SOC and SOH

reporting to external entities. Broadly speaking, if system designers can be confident about a

battery’s SOC to within just a few percent error, and they know that the SOC estimation will

maintain tracking even under extremely dynamic loads (e.g.for electric vehicles), they can use

the available energy more efficiently and more aggressively.

5.5.2 Plant Model

The ability for model-based SOC and SOH tracking depends to a great extent on developing

an accurate behavioral model of the rechargeable cell. There are a number of ways to model

a cell. Some approaches such as [2, 86] rely on a deep analysis of the physical and chemical

properties of the cell in order to derive a model of its high-level behavior. Despite the high

degree of accuracy, typically reduced-order versions of a chemical models must be identified

in an order to reduce the computational complexity to a level which can be handled in online

applications[87]. Broader coverage of estimation methods appear in [88].

An often-overlooked aspect of SOC estimation is that accurately estimating the SOC for an

entire battery, even with a highly accurate cell model, cannot be done by simply considering the

terminal voltage of that battery. This approach assumes that the constituent cells are always

at the same SOC, and also have the same physical cell attributes, such as capacity or internal

resistance. Research on model-building has shown this is not the case [89, 90]. This approach is

especially ineffective when one wants to accurately predict available power, as over- or under-

estimates near the top or bottom of the SOC range could result in some cells being forced

outside their safe operational ranges. The unfortunate implication (from a system complexity

standpoint) is that the state of each cell in a battery must be considered in some way.

The most straightforward method to estimate SOC/SOH for individual cells in a battery

is to develop a model of an “average” cell, and deploy one or more Kalman Filter which use

this model to track the states of a set of cells. This allows research on single-cell methods to
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Figure 5.7: Cell model consisting of a linear ARX filter and a non-linear (chemistry-dependent)
characteristic curve.

directly translate to a multi-cell approach. A black-box view of the proposed system context

is shown in Fig. 5.6. The per-cell information can then be fed to battery protection logic, cell

balancing logic, or summarized for instrumentation.

In this work, we have opted for a more abstract, system-identification driven approach

rather than a principles-first physical approach, as the former is generally less complex, and

easier to generalize to other cell chemistries. However, for our PWAKF solution, any model

which can be represented in state-space notation can be utilized. The model used for the case

study is a that of a rechargeable cell (Fig. 5.7) and is based on prior work on the subject [81]. It

is only non-linear in one dimension, and that non-linearity must be identified empirically; thus

it is well-suited for piecewise-affine approximation, using a simple point-to-point partitioning

procedure similar to that described in [61]. As for cell characterization procedures, more details

appear in [91].

5.5.2.1 State Update Expression

The discrete-time state-space representation will only be summarized here. The structure

of the model consists of two superimposed behaviors: an autoregressive exogenous (ARX)

model [92] to describe the dynamic behavior, and an empirically obtained curve to describe the

relationship between the cell’s State of Charge (SOC: an unmeasurable, hidden state) and its

open-circuit voltage Voc (directly measurable).

The state update equations below (ie f(x̂k, uk)) are refactored so that they can be written

in standard state space form. They are fully linear as a result of the ARX filter.
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(5.4)

The constants appearing in the state update matrices are as follows: the ARX constants

a1, a2, b1, and b2 are extracted from cell cycling data, ∆t is our simulation timestep (i.e. sensor

sample period), and Ck is the nominal cell capacity. Finally, ik is the measured battery current.

5.5.2.2 Measurement Expression

The system nonlinearity appears in the measurement expression, a nonlinear function of

SOC called Voc.

y = g(xk, uk) = Voc(SOCk) + Vd|k (5.5)

We fit a nd = 9th-order polynomial to the sampled data to obtain a continuous, smooth

curve with a sum of squares due to error (SSE) of 5mV.

y = g(xk, uk) =

nd∑
i=1

piSOC
nd−i
k + Vd|k (5.6)

This curve is differentiable which allows it to be use it in the standard EKF procedure.

5.5.3 Conversion to Piecewise Affine Model

The nonlinear relationship which appears in the measurement expression is plotted in

Fig. 5.8, which compares a 9th-order polynomial fit to a simple point-to-point linearized method.

The piecewise-affine expression for each region is shown below, assuming a simple point-to-point
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Figure 5.8: Nonlinear relationship between Voc and SOC.

partitioning scheme with q = 16 as per Equation 3.6. Four bits are needed to uniquely identify

these regions.

y = g(xk, uk) =

[
mi 1 0 0

]
SOCk

Vd|k

Vd|k−1

+

[
bi 0

]1

u


∀i = 1, 2, . . . , 16

(5.7)

Based on this scheme, each region will have a specific value of mi and bi which are the slope

and y-intercept of the line connecting each pair of sampled data points on the SOC-Voc curve.

For q = 16, internally SOC is represented by a floating-point value in the range 0 to 16; domain

transformation Tf = 16 can be used to stretch a [0, 1] domain to [0, 15]. In this case, unlike

the Pendulum example, wrapping behavior at the edges is likely to be undesirable; instead the

“FindRegion” functional unit from Chapter 4 should be configured for saturating behavior.

5.5.4 Performance

Based on Equation 3.18 the runtime for a 4 state model using the PWAKF coprocessor

is 19.4µs, and based on Equation 4.12 the memory requirements is 3584 words. The most

straightforward means of tracking multiple cells is to overlay an additional sequencer which

iteratively updates each cell state. This approach does not significantly increase memory con-

sumption, as only the state vector will need to be duplicated for each cell. As an example, a

large battery with 80 series-connected cells would require 1.6ms for full-battery state update.
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In the discussion that follows, regardless of internal representation we will describe SOC

as a real value in the range [0, 1]. Thanks to basic Kalman Filter behavior the system state

will eventually settle on the true SOC value even when it is initialized poorly. However, if the

sample rate is low, for example once per second, poor initialization can drastically increase

the delay before the SOC measurement is ready for use by the system. As seen in Fig. 5.9a,

when all cells are incorrectly initialized at 0.20 SOC, at 1s sampling, cell 1 takes almost 30

minutes to reach steady-state. The state initialization vector should thus be saved in non-

volatile memory periodically and then recovered at system reset to minimize startup delay. As

seen in Fig. 5.9b, even initializing the states to 0.70 reduces the time to steady-state to less than

20s. Conveniently, since the Kalman Error Covariance matrix (Pk) is updated each iteration,

it is also possible to determine when SOC has been acquired when the uncertainty reduces to a

given threshold. The uncertainty (variance) for each state is contained in the diagonals of the

matrix. The plot in Fig. 5.10 shows how the uncertainty reduces over the first 10 iterations

(seconds) of the algorithm. The bounds represent two standard deviations. Unfortunately, it

is possible to make the state “over confident” by underestimating the system noise.

5.6 Multiple Kalman Filters

Some applications may require multiple Kalman Filters to be implemented. It is useful to

think of the PWAKF architecture proposed in this work as a single IP Block which may be

instantiated more than once times as required, each configured for the characteristics of the

model for which it is intended to track. In other cases, the states of each plant in a large

array of plants having identical models must be computed–perhaps too large for the resource

available on modern FPGAs. For example, the cells in a large battery back will have the same

model, but different values for state of charge, state of health, etc at any given moment. For

tracking objects in an image, each object will have a position, velocity, acceleration, etc. For

these cases it makes sense to simply perform time-multiplexing on the same Kalman Filter

processor. Note that this approach does not suffer the same problems as time-multiplexing

on a software processor, since each task is processed sequentially in a fixed order and at fixed

intervals using a time-deterministic state machine.
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Another interesting problem arises in applications where one modeling goal is to assess the

“health” of a plant while simultaneously monitoring its state. For example, there is interest in

monitoring the health of aircraft engines [93, 94]. The goal of monitoring the engine health is

to lengthen the lifespan of an aircraft and save money on repairs and replacements. Piece-wise

Kalman filters must be designed at different operating conditions–for example, one model is

used when the engine is in “good” health, one model when it is in “fair” health, and so on.

A similar example appears in [95, 81] which is concerned with assessing the state of health

(e.g. degree of degradation from nominal capacity) of rechargeable cells. In both cases, the

health parameter varies on a different timescale (i.e. slower) than the state; therefore it should

be implemented in a separate filter loop. Since health parameters usually vary at very slow

rates (e.g. days, months, years), it makes sense to implement such a loop in software since

any delay or jitter will comprise an extremely small percent of the overall sampling period.

Fig. 5.11 shows two Kalman Filters running in parallel with an L − fold difference in sample

rate. The “micro-scale” filter in this case estimates State of Charge while the “macro-scale”

filter estimates State of Health.
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In both examples, the health parameter varies on a different timescale (i.e. slower) than

the state; therefore it should be implemented in a separate filter loop. Since health parameters

usually vary at very slow rates (e.g. days, months, years), it makes sense to implement such a

loop in software since any delay or jitter will comprise an extremely small percent of the overall

sampling period.

5.7 Conclusion

In this section we have explored implementation power usage and showed several examples

of linear or piecewise-affine defined plant models, along with performance analyses as pertaining

to our hardware implementation.
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CHAPTER 6. CONCLUSION

6.1 Design Evolution

The location of the hardware-software partition for each of the approaches to Kalman

Filtering discussed in this work are illustrated in Fig. 6.1.

The software-only Kalman Filter (Fig. 6.1a) is fast to implement, but imposes heavy com-

pute requirements with for embedded hardware. Within any typical multiprocess software

processor it will also contribute to stochastic timing characteristics, which complicates analysis

for the broader control loop which it may be feeding.

The existing mixed hardware-software approaches to Kalman Filtering (Fig. 6.1b) are effec-

tive at speeding up an application, but also exhibit high communication cost for applications

requiring fast update times or complex models. This approach also inherits software schedul-

ing issues from the software-only approach, since the application-specific code must still share

software processor time with other lower or higher priority tasks.

The mixed hardware-software PWAKF (Fig. 6.1c) approach enables a reduced communica-

tion cost, but it still does not completely eliminate scheduling-induced timing issues resulting

from shared compute resources. A potential drawback is that additional planning is needed for

model partitioning.

The remaining limitations in the mixed hardware-software PWAKF lead us to the hardware-

only PWAKF (Fig. 6.1d), which eliminates coefficient transfers and timing uncertainty. Like

the hardware-software PWAKF, applications sensitive to modeling accuracy will require extra

planning to implement model partitioning. However, in this case the extra design time may be

offset by the fact that less time needs to be spent developing complex computational models

and estimating WCET, since timing is guaranteed by design.
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Of course, any such approach constitutes merely one tool in a CPS designer’s toolbelt–one

which must be selected carefully based on the application requirements. It is hoped that this

dissertation has provided the necessary design characterization and workflow examples to assist

in such a decision-making process.

6.2 Future Work

There are a number of avenues for future work, several of which relate to relatively minor

variations on the architecture. It is possible to obtain additional hardware performance by

adding one or more dedicated matrix math units which have lower time complexity than the

Fadeev algorithm (e.g. for simple matrix multiplication); from this perspective, the Fadeev

algorithm is mainly reserved for the matrix inversion expression in the Kalman Filter algo-

rithm. This modification will also eliminate the Fadeev algorithm’s constraint that A,B,C and

D must be square matrices, which would reduce memory overhead for simple models. It is

also of interest to more deeply compare the efficacy of alternative partitioning schemes. The

partitioning scheme impacts hardware and memory resources, and possibly computation time.

Finally, although we focus on applying piecewise modeling approach to the Kalman Filter,

it is also possible to extend the method to other state-space based algorithms such as LQR or

MPC. For example it is possible to develop a highly accelerated Linear Quadratic Gaussian

(LQG) regulator by attaching the input of the LQR controller to the output of the Kalman

Filter. This structure is shown Fig. 6.2, and an example design process for a 10-state LQG

controller for an aircraft appears in [96]. Last, but not least, we would seek to integrate these

techniques into a complete Cyber-Physical System, such as a quadrotor helicopter.
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